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Abstract
Atmospheric turbulence and diffraction of light result in the blurring of images of
celestial objects when they are observed by ground based telescopes. To correct for
the distortions caused by wind flow or small varying temperature regions in the at-
mosphere, the new generation of Extremely Large Telescopes (ELTs) uses Adaptive
Optics (AO) techniques. An AO system consists of wavefront sensors, control algo-
rithms and deformable mirrors. A wavefront sensor measures incoming distorted wave-
fronts, the control algorithm links the wavefront sensor measurements to the mirror
actuator commands, and deformable mirrors mechanically correct for the atmospheric
aberrations in real-time. Reconstruction of the unknown wavefront from given sensor
measurements is an Inverse Problem.

Many instruments currently under development for ELT-sized telescopes have pyramid
wavefront sensors included as the primary option. For this sensor type, the relation
between the intensity of the incoming light and sensor data is non-linear. The high
number of correcting elements to be controlled in real-time or the segmented primary
mirrors of the ELTs lead to unprecedented challenges when designing the control al-
gorithms. Therefore, a precise mathematical investigation of the pyramid sensor and
its forward models is essential for accurate and fast wavefront reconstruction.

In this Thesis, we present new approaches for wavefront reconstruction from pyramid
wavefront sensor data for which our detailed analytical study of the pyramid sensor
lays the mathematical foundation. Therefore, we derive the pyramid sensor models
in a distributional sense and provide a thorough analysis of the underlying operators,
e.g., we linearize the models or calculate Fréchet derivatives and adjoint operators.
Using further approximations that are suggested by the physical setting of the sensor
itself, we can describe the sensor’s forward models as roof sensor configurations or as
a variant of the finite Hilbert transform of the incoming wavefront. The analysis is
extended to these operators as well.

Based on various approximate models, several algorithms have been developed in re-
cent years for a stable, high-quality, and high-speed wavefront correction. Among
those, we emphasize interaction-matrix-based approaches, Fourier domain methods,
iterative algorithms, and methods based on the inversion of the finite Hilbert trans-
form. We briefly present the core ideas of already existing algorithms and explicitly
provide the theoretical background of new approaches for wavefront reconstruction
from pyramid and roof wavefront sensor data.
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We divide the new algorithms into two groups: linear and non-linear wavefront re-
construction methods. With linear approaches, we use a singular value expansion for
wavefront reconstruction or apply well-known iterative methods such as the conjugate
gradient method, the steepest descent algorithm, Landweber iteration or Kaczmarz
versions of the previously mentioned methods. With non-linear approaches, we employ
non-linear Landweber iteration and Landweber-Kaczmarz iteration to the problem of
wavefront reconstruction from pyramid sensor data.

An additional complication arises due to the structure of the ELTs. So called telescope
spiders create areas where the information of the phase is isolated on the wavefront
sensor detector, leading to pupil fragmentation and a break in the spatial continuity of
the data, and further to extremely poor wavefront reconstruction. These unwanted er-
rors make several existing control algorithms unfeasible for telescope systems with wide
spiders. To overcome the effects induced by telescope spider obstruction we propose a
hybrid scheme, the so called Split Approach, which combines model-based algorithms
with methods that provide the lost information directly from isolated reconstructors
resulting in accurate wavefront reconstruction for segmented pupils.

The effectiveness of the proposed algorithms is demonstrated in the context of the 39 m
Extremely Large Telescope. Numerical evaluations using European Southern Obser-
vatory’s end-to-end simulation tool Octopus include detailed comparisons of speed
and reconstruction quality of the proposed new methods to previously developed al-
gorithms.
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Zusammenfassung
Aufgrund von atmosphärischen Turbulenzen und Lichtbrechung sind Bilder von Him-
melskörpern, die mit erdgebundenen Teleskopen aufgenommen werden, verschwom-
men. Um die Störungen, hervorgerufen von Windströmungen oder kleinen, veränder-
lichen Temperaturzonen in der Atmosphäre, auszugleichen, verwendet man für die
neue Generation von Extremely Large Telescopes (ELTs) die Methode der Adaptiven
Optik (AO). Ein AO System besteht aus Wellenfrontsensoren, Kontrollalgorithmen
und verstellbaren Spiegeln. Ein Wellenfrontsensor misst einfallende, verzerrte Wellen-
fronten, der Kontrollalgorithmus verbindet die Wellenfrontsensormessungen mit den
Kommandos für die Spiegelaktuatoren und die verstellbaren Spiegeln korrigieren die
atmosphärischen Bildfehler mechanisch in Echtzeit. Die Rekonstruktion der unbekann-
ten Wellenfront aus den gegebenen Sensormessungen ist ein Inverses Problem.

In vielen der Instrumente, die derzeit für Teleskope der Größenordnung von ELTs eint-
wickelt werden, ist der Pyramid Wellenfrontsensor als erste Option vorgesehen. Für
diese Art von Sensor ist die Verbindung zwischen der Intensität des einfallenden Lich-
tes und der Sensordaten nichtlinear. Die hohe Anzahl der Korrekturelemente, die in
Echtzeit kontrolliert werden müssen, oder die segmentierten Hauptspiegel der ELTs
führen zu noch nie dagewesenen Herausforderungen bei der Umsetzung von Kontroll-
algorithmen. Deshalb ist für eine genaue und schnelle Wellenfrontrekonstruktion eine
präzise mathematische Untersuchung des Pyramid Wellenfrontsensors and seiner Vor-
wärtsmodelle essentiell.

In dieser Dissertation präsentieren wir neue Ansätze zur Wellenfrontrekonstruktion
aus Pyramid Wellenfrontsensordaten, für welche unsere detaillierte Untersuchung des
Pyramid Sensors die mathematische Grundlage bildet. Für diesen Zweck leiten wir die
Pyramid Sensormodelle im Distributionensinn her und geben eine ausführliche Analy-
se der zu Grunde liegenden Operatoren an; zum Beispiel linearisieren wir die Modelle
oder berechnen Fréchet Ableitungen und adjungierte Operatoren. Unter Verwendung
weiterer Approximationen, die vom physikalischen Aufbau des Sensors abgeleitet wer-
den, können wir die Vorwärtsmodelle des Sensors als eine Roof Sensor–Konfigurationen
oder als eine Variante der endlichen Hilbert Transformation der einfallenden Wellen-
front beschreiben. Die Analyse wird auch auf diese Operatoren ausgedehnt.

Basierend auf verschiedenen Vorwärtsmodellen sind in den letzten Jahren zahlreiche
Algorithmen für eine stabile und hochqualitative Hochgeschwindigkeits–Wellenfront-
korrektur entwickelt worden. Wir beschreiben unter diesen Ansätze solche, die auf

iii



einer Interaktions–Matrix basieren, Methoden im Fourierraum, iterative Ansätze und
Verfahren, die auf der Inversion der endlichen Hilbert Transformation beruhen. Wir
präsentieren kurz die Kernideen von bereits existierenden Algorithmen and stellen den
theoretischen Hintergrund von neuen Herangehensweisen zur Wellenfrontrekonstruk-
tion aus Pyramid und Roof Wellenfrontsensordaten im Detail dar.

Die neuen Algorithmen teilen wir in zwei Gruppen auf: lineare und nichtlineare Wellen-
frontrekonstruktionsmethoden. Als lineare Ansätze verwenden wir eine Singulärwert–
Erweiterung für die Wellenfrontrekonstruktion oder bekannte iterative Methoden wie
das CG–Verfahren, den Algorithmus des steilsten Abstiegs, Landweber Iteration oder
Kaczmarz Versionen der zuvor genannten Methoden. Als nichtlineare Ansätze benut-
zen wir nichtlineare Landweber Iteration und Landweber–Kaczmarz Iteration für das
Problem der Wellenfrontrekonstruktion aus Pyramid Sensordaten.

Eine zusätzliche Komplikation tritt aufgrund des Aufbaus der ELTs auf. Sogenann-
te Teleskop–Spiders erzeugen Bereiche, in welchen die Information über die Phase am
Detektor des Wellenfrontsensors isoliert ist, was zu einer Fragmentierung der Teleskop-
apertur und einem Verlust der gebietlichen Verbundenheit der Daten und weiters zu
äußerst schlechter Wellenfrontrekonstruktion führt. Diese unerwünschten Fehlerquel-
len machen existierende Kontrollalgorithmen unbrauchbar für Teleskopsysteme mit
breiten Spider–Strukturen. Um die Effekte, die durch Teleskop–Spider–Beschattung
entstehen, zu korrigieren, entwickeln wir ein zweiteiliges Schema, den sogenannten
Split Ansatz, welcher Modell–basierende Algorithmen mit Methoden, die die verlorene
Information direkt aus unabhägigen Rekonstruktoren gewinnen, kombinert und so in
genaue Wellenfrontrekonstruktion für segmentierte Teleskopöffnungen resultiert.

Die Effektivität der eingeführten Algorithmen wird im Kontext des 39 m großen Extre-
mely Large Telescopes demonstriert. Numerische Evaluierungen aus der “end–to–end“
Simulationsumgebung Octopus von der Europäischen Südsternwarte beinhalten detail-
lierte Geschwindigkeits– und Qualitätsvergleiche der präsentierten neuen Methoden zu
vorher entwickelten Algorithmen.
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CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

Time-varying optical perturbations introduced by the atmosphere severely degrade
the image quality of ground based telescopes. Adaptive Optics systems correct these
aberrations in real-time: The facilities have devices incorporated that sense the in-
coming wavefronts and cancel the originated perturbations with a deformable mirror.
Suitable mirror configurations are based on an accurate estimation of the shape of
the incoming wavefront and can be calculated from wavefront sensor measurements.
Reconstruction of the wavefront from sensor data is an Inverse Problem for which the
underlying mathematical forward model depends on the type of the wavefront sen-
sor. This Thesis is mainly concerned with solving the Inverse Problem of wavefront
reconstruction using a pyramid wavefront sensor.

More than twenty years ago the pyramid wavefront sensor was proposed for the first
time as a promising alternative to other types of wavefront measuring devices [164].
Nowadays, wavefront reconstruction algorithms for the pyramid sensor are in high de-
mand since the devices are planned to be part of many instruments currently under
development for ground based telescopes. For the next generation of Extremely Large
Telescopes having mirror sizes up to 40 m, the pyramid sensor has been gaining at-
tention from the astronomical community by setting new standards for AO correction
quality.

Aside from astronomical applications, the pyramid wavefront sensor is considered in
adaptive loops in ophthalmology and microscopy where the underlying concepts are
comparable to atmosphere induced perturbations sensing for adaptive optics in as-
tronomy.

The focus of the Thesis lies in the development of wavefront reconstruction algorithms
for the pyramid sensor on non-segmented and segmented pupils based on detailed in-
vestigations of the mathematical forward models. The theoretical part is accompanied
by numerical simulations using an end-to-end simulation environment in which the
algorithms have been implemented.



2 CHAPTER 1. INTRODUCTION

The derivation of mathematically well-defined pyramid wavefront sensor forward mod-
els in a distributional sense as well as an extensive theoretical analysis of the underlying
operators are the basis of our research. As a result of these investigations, we have
developed several reconstruction algorithms which are either based on a linearization
of the generally non-linear problem or consist of the application of non-linear itera-
tive algorithms. The reconstruction methods are precisely analyzed in numerical test
cases. Detailed comparisons of the new methods to already existing reconstructors are
presented. Additionally, we describe two approaches for direct segment piston recon-
struction needed in combination with model-based reconstructors for high-quality and
high-speed wavefront estimation on segmented telescope pupils.

The Thesis, which uses parts of our work in [106, 107, 108, 109, 110, 111, 149], is
organized as follows:

In Chapter 2 we give an introduction to earthbound telescope systems and the prin-
ciples of astronomical Adaptive Optics. We review the basic concepts on light forma-
tion and atmospheric turbulence. Moreover, several components, different operating
modes, and quality measures of an AO system are established.

Chapter 3 addresses the pyramid wavefront sensor modeling. We start with specifica-
tions on the physical configuration of a pyramid sensor. The mathematical model of
the sensor, which is the foundation of the developed model-based reconstruction algo-
rithms, is derived by the usage of distribution theory. We consider different variants,
approximations and linearizations of the full non-linear Fourier optics based model
and evaluate the corresponding Fourier transforms, Fréchet derivatives, and adjoint
operators.

In Chapter 4 a new linear wavefront reconstructor for the non-modulated pyramid
wavefront sensor is introduced. The idea is based on a singular value expansion of the
underlying operator. Additionally, we consider an iterative method for measurement
continuation which was used in combination with the presented wavefront reconstruc-
tion approach.

In Chapter 5 we adapt several well-known mathematical algorithms from the field of
Inverse Problems to the problem of wavefront reconstruction using pyramid sensor
data. The considered approaches are the conjugate gradient algorithm, the steepest
descent method, linear Landweber iteration as well as Kaczmarz strategies of the above
mentioned approaches.

In Chapter 6 we present one of the first model-based non-linear algorithms for wave-
front estimation on telescope instruments using pyramid sensors based on the appli-
cation of the non-linear Landweber and Landweber-Kaczmarz method.

Chapter 7 contains an overview on wavefront reconstruction methods for the pyramid
wavefront sensor. We briefly present the core ideas of previously developed algorithms
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and make thorough comparisons of underlying pyramid sensor models, computational
complexities, and the quality performance between already existing approaches and
those introduced in this Thesis.

In Chapter 8 we investigate the effects of large secondary mirror support structures on
wavefront reconstruction. We review several variants of interaction-matrix-based algo-
rithms for reconstruction and introduce a new method for accurate and fast wavefront
reconstruction on segmented pupils. This approach is a hybrid scheme in which the
application of piston reconstructors is necessary. Two such methods for direct segment
piston reconstruction on segmented pupils are established.

Finally, Chapter 9 contains conclusions on the results obtained in the previous Chap-
ters and an outlook to future work.
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Chapter 2

Astronomical Adaptive Optics

Ground based telescope facilities suffer from degraded image quality caused by atmo-
spheric turbulence. When light from a distant star passes the Earth’s atmosphere,
initially planar wavefronts get distorted due to turbulent air motion related to fluctu-
ations of the index of refraction. Therefore, advanced Adaptive Optics (AO) systems
[99, 174] are incorporated in innovative telescope systems to mechanically correct in
real-time for the distortions with deformable mirrors. The shape of the deformable
mirrors is determined by measuring wavefronts coming from either bright astronomical
stars or artificially produced laser beacons. The basic idea is to reflect the distorted
wavefronts on a mirror that is shaped appropriately such that the corrected wavefronts
allow for high image quality when observed by the science camera (see Figure 2.1).
The according positioning of the mirror actuators implies the knowledge of the in-
coming wavefronts. Thus, in Adaptive Optics one is interested in the reconstruction
of the unknown incoming wavefront Φ from available data in order to calculate the
optimal shape of the deformable mirror. Unfortunately, there exists no optical device
which is able to measure the wavefront directly. Instead, a wavefront sensor measures
the time-averaged characteristic of the captured light that is related to the incoming
phase.

This Chapter contains an introduction to the new generation of Extremely Large
Telescopes and provides a review on basic principles for image formation on such
telescope systems. We mention the concept of atmospheric turbulence affecting the
observations on earthbound telescope facilities and describe the main components and
quality measures of an AO system.

2.1 The new era of Extremely Large Telescopes
Since the invention of the first telescopes in the 1600s, our view from Earth is contin-
uously enhancing and pushing towards a new breakthrough for the new generation of
Extremely Large Telescopes (ELTs). Currently, there are several ground based tele-
scope systems in development having larger mirrors than ever (cf Figure 2.2). Today’s
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Figure 2.1: Fundamental idea of astronomical AO, source: [43]. Reflection of the light
of a distorted wavefront on a mirror results in a corrected wavefront propagating to
the science camera.

largest telescope, the Gran Telescopio Canarias located in La Palma, has a primary
mirror diameter of 10.4 m. However, the very much smaller 2.4 m Hubble space tele-
scope is surpassing with respect to image quality. For space telescopes, the light does
not pass the atmosphere during observations, and therefore is not affected by atmo-
spheric turbulence. This is different on earthbound observing sites. Nevertheless, by
the usage of specific image improving techniques, known as Adaptive Optics, observers
on Earth’s surface expect outstanding results with the new ELTs. With the help of
deformable, computer-controlled mirrors that adjust for atmospheric aberrations in
real-time, we will see light from farther and fainter objects than before.
The scientific programs of the new astronomical technologies consist of, e.g., studies
of the formation of the first galaxies, investigations of dark matter and dark energy,
black holes and exoplanets, as well as searches for life in space or predictions on the
Universe in a few trillion years from now on.

The largest telescope planned, the Extremely Large Telescope (ELT)[150], with a pri-
mary mirror diameter of 39 m will gather more light than all existing ground based
telescopes combined. This telescope system is considered in the numerical simulations
contained in the Thesis. It is explained in more detail in the subsequent Section 2.1.1.
Another ELT-sized telescope, the Giant Magellan Telescope (GMT) [152], is expected
to offer 10 times sharper images than the Hubble space telescope. As the ELT, it will
be situated in the Atacama desert in Chile, and it will consist of 7 primary mirrors
each having 8.4 m in diameter. First light is planned in 2024.
As a complement to the James Webb Space Telescope, the project on the Thirty Meter
Telescope (TMT) [151] started in the 1990s. The main mirror will constitute of 492
segments each having a diameter of 1.4 m. The telescope is planned to be build on
Mauna Kea in Hawaii and shall see first light in 2027.
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Figure 2.2: Size comparison of existing and planned telescope systems, source: [150].
The Very Large Telescope, Extremely Large Telescope (largest telescope planned),
Keck Telescopes, Thirty Meter Telescope, Gran Telescopio Canarias (largest state of
the art telescope), Subaru Telescope, South African Large Telescope, New Technology
Telescope, Giant Magellan Telescope, and Large Synoptic Survey Telescope (from left
to right).

2.1.1 ESO’s Extremely Large Telescope
The Extremely Large Telescope formerly known as European Extremely Large Tele-
scope (E-ELT) is currently constructed by the European Southern Observatory (ESO).
ESO is an intergovernmental astronomy organisation supported by 17 member states.
Austria joined ESO in 2008. The Headquarters are situated in Garching close to Mu-
nich, Germany, and ESO employs about 700 staff members. The organisation builds
and operates ground based telescope systems on the Southern Hemisphere. It provides
powerful research facilities to enable astrophysicists and astronomers scientific discov-
eries. Many of ESO’s observing sites are in Chile, e.g., La Silla or Paranal where the
Very Large Telescope (VLT) is located. At a distance not to far from Cerro Paranal,
more precisely on Cerro Armazones at an altitude of more than 3000 m, ESO is now
constructing the ELT.

With a 39.3 m primary mirror resulting in a light collecting area of 978 m2, the ELT
will become “the world’s biggest eye on the sky“. The largest telescope will collect
15 times more light than any of the present day state of the art observing facilities.
The primary mirror will compose of altogether 798 hexagonal mirror segments being
approximately 1.4 m wide and 50 cm thick.

The concept is based on a 5-mirror-scheme including a deformable mirror (M4) with
around 5300 actuators that adapt the mirror’s shape more than a thousand times
per second. The secondary mirror will have about 4 m in diameter and shades the
primary mirror which is known as central obstruction. The support structures of the
secondary mirror, also named spiders, shade the primary mirror too. These shadows
pose new challenges to wavefront reconstruction for the generation of Extremely Large
Telescopes as precisely explained in Chapter 8.

In 2005, ESO started first studies on the development of an ELT. The official beginning
of construction was in June 2014 and first light is currently scheduled around 2026.
After Austria had entered into the European Southern Observatory, the government
had to provide financial and scientific contribution for this membership. That time
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was the birth of the Austrian Adaptive Optics (AAO) team – a group of researchers
at the Industrial Mathematics Institute of the Johannes Kepler University and the
Johann Radon Institute for Computational and Applied Mathematics (RICAM) Linz.
Its first project aimed at the development of algorithms and software for the E-ELT
[148]. Today, the AAO group participates in the consortia of two first light instruments
of the ELT, namely METIS [24] and MICADO [49].

Instruments of the ELT

The first light ELT instruments are the High Angular Resolution Monolithic Opti-
cal and Near-infrared Integral field spectograph (HARMONI), the Mid-infrared ELT
Imager and Spectograph (METIS), and the Multi-AO Imaging CAmera for Deep Ob-
servations (MICADO) combined with the Adaptive Optics module Multi conjugate
Adaptive Optics RelaY (MAORY). It will be possible to change the position of the
whole telescope dome and to switch from one instrument to another within minutes.
Having the variety of instruments, the ELT offers the ability to perform observations
in a wide range of wavelengths from the optical to the mid-infrared.

Let us now explain those instruments we use in numerical simulations more precisely.
As one of three first light instruments of the ELT, the Mid-infrared ELT Imager and
Spectograph [24] will allow investigations of exoplanets with respect to physical and
chemical properties like weather, temperature, seasons or the composition of their
atmospheres. It will amongst others focus on proto-planetary disks, the formation of
planets and the Solar System as well as the growth of super massive black holes. The
instrument will enable medium-resolution spectroscopy, coronagraphy, imaging and
high-resolution integral field spectroscopy. For the METIS instrument, an annular
mask is currently considered with an outer diameter of 37 m and an inner diameter
of 11.1 m, i.e., all edges of the real ELT primary mirror having a diameter of 39 m
are cropped such that there remains a circular area. The currently scheduled sensing
device is a pyramid wavefront sensor (see Chapter 3). Within the METIS consortium
the AAO team is involved in the development of AO control algorithms.
Another instrument is the ExoPlanet Imaging Camera and Spectograph (EPICS) [120]
which is planned for the direct imaging and characterization of extra-solar planets.
The 2nd-generation-instrument of the ELT will be optimized for an application in the
visible and the near-infrared and equipped with photometric, spectroscopic, and po-
larimetric capabilities. In the EPICS simulations contained in this Thesis we consider
the originally planned 42 m ELT having a pyramid wavefront sensor.

2.2 Principles on image formation on telescope sys-
tems

For the description of the imaging process on a telescope, we mainly follow the lines
of [91, 139, 174, 178]. If we neglect amplitude variations, the telescope pupil Ω is
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represented by a characteristic function XΩ. This means that the function describing
the telescope aperture is equal to one within the pupil and zero outside. The telescope
aperture usually has a circular shape. Due to the central obstruction induced by the
secondary mirror, light is often only usable on an annular domain. In case of large
support structures of the secondary mirrors we additionally have to take obstruction
effects of the spiders into account. Those divide the light capturing area of the telescope
pupil into disconnected segments (cf Chapter 8).

The image Io observed on a telescope is related to the astronomical object Ia by a
convolution with the point spread function PSF of the telescope, i.e.,

Io (r) =
∫
R2

Ia (r′) · PSF (r − r′) dr′, (2.1)

where r ∈ R2 indicates the spatial coordinates. Utilizing the optical transfer function
OTF given by

OTF (r) = XΩ (r) eiΦ(r),

the point spread function PSF : R2 → R is connected to the Fourier transform of the
OTF by

PSF (ξ, η) =
∣∣∣F {XΩe

iΦ
}

(ξ, η)
∣∣∣2 .

The wavefront aberration ϕ in optical path distance (meters) is said to be related to
the incoming phase Φ given in radians by

Φ = 2π
λ
ϕ

for the wavelength λ. In this Thesis, we omit the multiplicative constant and do not
distinguish between phase and wavefront, i.e., we use the notation Φ for both since we
are mainly interested in the shape of the incoming wavefront aberrations. However,
we keep in mind that they differ in their units and that the phase strongly depends
on the wavelength λ.

If we do not take atmospheric aberrations into account and assume Φ = 0, we receive
the diffraction limited PSF. When considering a circular telescope pupil the intensity
distribution of an ideal point source formed by a telescope is [91]

PSF (r) =
(
|Ω|
λz

)2 [
2J1 (kDr/(2z))

kDr/(2z)

]2

for the first order Bessel function J1 of the first kind, the wave number k = (2π) /λ, the
telescope diameter D, the aperture surface |Ω| = π (D/2)2, and the normal distance
z. The above term is referred to as the Airy pattern. Note that J1 can be represented
by the series expansion around zero as

J1 (x) =
∞∑
j=0

(−1)j

j!Γ (j + 2)

(
x

2

)2j+1
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with Γ (n) = (n− 1)! for n ∈ N denoting the Gamma function.

Having a look onto equation (2.1), the best choice of a PSF is a delta distribution,
i.e., the observed image corresponds to the real image. The larger a telescope aperture
becomes the better the corresponding PSF fits a delta distribution as illustrated in
Figure 2.3 for the VLT and the ELT. This is due to the dependence of the PSF on the
telescope diameter D.

Figure 2.3: Diffraction limited PSF of an 8 m and a 42 m telescope, source [191]. The
PSF of the ELT better approximates a delta distribution.

For ground based observations, the diffraction limited PSF is affected by atmospheric
aberrations which results in a lower maximum intensity and oscillation patterns to-
wards the outer rings. The goal is to correct these perturbations and come as close as
possible to the diffraction limited PSF resulting in sharp images.
Point spread reconstruction algorithms and blind deconvolution methods for Extremely
Large Telescopes can be found, e.g., in [104, 210, 220, 221].

2.3 Atmospheric turbulence
Turbulent mixing in the Earth’s atmosphere causes blurring of astronomical objects.
For observations with earthbound telescope systems, the light has to pass the atmo-
sphere, and therefore suffers from distortions [99, 174, 178]. Atmospheric turbulence
itself can be described by changes in the index of refraction r defined as

r = c

v

for c the speed of light in vacuum and v the phase velocity of light in the considered
medium. Turbulent air motion, whose energy source is the differential heating and
cooling of the Earth’s surface caused by the sun and the diurnal cycle, is experienced
as wind. The resulting temperature inhomogeneity leads to random variations of the
refractive index in the Earth’s atmosphere. As a consequence, initially planar wave-
fronts get distorted when they travel through the atmosphere. In order to compensate
these aberrations, the knowledge of the statistics of the spatial structure of turbulence
is crucial.

Atmospheric models are mainly based on two parameters, the inner and the outer
scale. The outer scale L0 gives the size limit of the energy added to the fluid medium
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and initiating turbulence. The inner scale l0 characterizes the threshold where the so
called Reynolds number (determining the properties of fluid flows) reaches its critical
value induced by an energy cascade of the kinetic energy continually transferred to
smaller scale motions. In simple terms, L0 describes the size of the largest and l0 the
size of the smallest turbulent eddies. The inner scale varies from about 1 mm near the
ground and 1 cm close to the tropopause. The outer scale usually ranges from tens to
hundreds of meters but its value still is the subject of debate [163].

2.3.1 Kolmogorov turbulence model
One approach describing optical effects caused by atmospheric turbulence is the Kol-
mogorov turbulence model [121]. Kolmogorov investigated the mechanical structure of
turbulence and proposed a scheme for the velocity of motion in a fluid medium. In the
inertial regime between the inner and outer scale, the model of Kolmogorov assumes
homogeneity and isotropy of turbulence and describes the turbulence statistics by a
stationary, isotropic Gaussian random field.

We are interested in the difference in the refractive index between a point r and another
nearby point r′. For this reason, we consider the structure function

Dx (r, r′) = E
(
|x (r)− x (r′)|2

)
of a random variable x in order to describe the spatial structure of a random process.
The homogeneity causes the independence of the turbulence statistics on the specific
position and the isotropy induces that higher-order statistical moments are dependent
on the radial distance |r − r′| of the points only. The local strength of the variation
of the index of refraction is measured by the index structure coefficient c2

n. These
considerations result in

Dn (r, r′) = c2
n |r − r′|

2/3
. (2.2)

Thus, the turbulence spectrum is described only by the turbulence strength c2
n which is

given in units of m−2/3. If we consider the integral over c2
n along the light propagation

path, we obtain a measure for the total amount of wavefront degradation, i.e., the
seeing. Equation (2.2) is valid as long as the distance between the two considered
points is less than L0, and energy is dissipated at the inner scale l0.
The c2

n-profile varies with altitude, location and time of day. Methods for measuring its
values empirically and several analytical models of the c2

n-profile based on experimental
measurements, for instance made by balloons, can be found, e.g., in [178].

For the analysis of propagation through turbulence, a criterion that describes the
statistical distribution of the number and the size of the turbulent eddies in the atmo-
sphere was derived from the structure function Dn. This 3d power spectrum is called
power spectral density (PSD) Φn. In the Kolmogorov model, ΦKol

n is given by [178]

ΦKol
n (κ) = 0.033 · c2

n |κ|
−11/3 for 2π

L0
< |κ| < 2π

l0
, (2.3)
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where κ = (κ1, κ2, κ3) denotes the spatial frequency of turbulence with the Euclidian
norm |κ| =

√
κ2

1 + κ2
2 + κ2

3. For |κ| → 0, the above model suffers from effects induced
by the singularity. For this reason, the model of von Karman was introduced.
Note that based on the considerations of the turbulence statistics in the Kolmogorov
model, the incoming wavefront Φ is an element of the Sobolev space H11/6 (R2) with
a high probability as derived from [55] in [60, 147].

2.3.2 Von Karman turbulence model
An alternative form of the power spectral density referred to as the von Karman
spectrum [119, 178] has been introduced in order to avoid the difficulties arising from
the pole at κ = 0 in (2.3). The PSD ΦKar

n in the von Karman model is written as

ΦKar
n (κ) = 0.033 · c2

n

(κ2 + κ2
0)11/6 e

−κ2/κ2
m

with κ0 = 2π/L0, κm = 5.92/L0. The von Karman PSD has a finite value for |κ| → 0
and rapidly decreases for growing frequencies.

2.3.3 Atmospheric layer model
The Earth’s atmosphere extends to an height of about 300 km [99]. Its pressure de-
creases smoothly with increasing height following an exponential law. This is different
for the profile of atmospheric turbulence. Most of the turbulence is concentrated in
distinguishable layers as derived form Taylor’s hypothesis of frozen flow [203]. These
layers travel parallel to the Earth’s surface at a certain velocity. It was observed that
the time frame of changes in the turbulence pattern of an atmospheric layer is slower
than the wind speed. Hence, over short time frames constant c2

n-profiles, which are
blown as “frozen“ structures over the telescope pupil at a typical speed of approxi-
mately 20 m/s, are assumed [163].
Due to solar heating and the development of thermal currents, turbulence is usually
stronger near the Earth’s surface at daytime. At night, turbulence occurrence is less
significant near the ground and most perturbations are present at higher altitudes,
especially at the tropopause, as a result of wind shear [99].

Following the descriptions, e.g., in [176], the atmosphere can be modeled by a finite
number L of infinitely thin layers under the assumptions of statistical independence of
each layer and a homogeneous statistics of turbulence in subregions. Let us denote the
amount of atmospheric turbulence in layer l at height hl by γl := c2

n (hl) for 1 ≤ l ≤ L.
Then, the relative turbulence strength is normalized in numerical simulations such that
it holds ∑L

l=1 γl = 1. As analyzed in [6, 7, 186], the usage of only a certain amount of
atmospheric layers is sufficient.
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Layer 1 2 3 4 5 6 7 8 9
Height (m) 47 140 281 562 1125 2250 4500 9000 18000
c2
n-profile 0.522 0.026 0.044 0.116 0.098 0.030 0.060 0.043 0.060

Table 2.1: Parameters of the 9-layer atmosphere used in the EPICS simulations. The
layer heights (in m) and approximate c2

n-profiles (in m−2/3) of the ESO standard 9-layer
atmosphere are listed. The corresponding Fried parameter is r0 = 12.9 cm.

In the numerical analysis in Chapter 4 - 8, we consider the ESO standard 9-layer at-
mosphere for the EPICS instrument and the ESO 35-layer atmosphere for simulations
of the METIS instrument.

The ESO standard 9-layer atmosphere [129] was derived from measurements at ESO’s
site Paranal in the Atacama desert in Northern Chile. The values for a median seeing
with a Fried parameter of r0 = 12.9 cm are shown in Table 2.1. The values used in our
numerical simulations for the ESO 35-layer atmosphere [183] were as well provided by
the European Southern Observatory.

2.3.4 Atmospheric parameters
Atmospheric seeing conditions can be derived from the turbulence c2

n-profiles, the
atmospheric layer altitudes, and the wind speeds. They are described, e.g., by the
Fried parameter r0 and the isoplanatic angle θ0.

Fried parameter

The Fried parameter or coherence radius r0 characterizes atmospheric seeing with
respect to the wavelength λ [82]. As a measure of the strength of turbulence, it
represents the integrated effect induced by refractive index fluctuations for the entire
atmosphere [99]. According to [178], r0 is described by

r0 = 0.185 ·
(

λ2∫∞
0 c2

n (h) dh

)3/5

,

and hence r0 ∝ λ6/5. The ratio
β = λ

r0

between the optical wavelength λ and the Fried parameter r0 is known as the atmo-
spheric seeing.

The Fried parameter is typically specified in the visible, more precisely at a wavelength
of 0.5 µm. Large values of r0 correspond to good seeing and weak turbulence effects
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while small numbers indicate bad seeing and strong atmospheric turbulence. Usually,
the Fried parameter covers a range of less than 5 cm when strong daytime turbulence
is present to more than 20 cm for good seeing at nighttime. Over periods of seconds
to minutes, the Fried parameter is continually changing [99].

The Fried parameter is decisive on proper choices of the number and the size of cor-
recting elements (subapertures/mirror actuators described in Section 2.4.2 and Sec-
tion 2.4.3) for an efficient compensation of the wavefront aberrations.

Anisoplanatism and isoplanatic angle

In Adaptive Optics we use measurements of a reference source to correct for the wave-
front aberrations of another (nearby) celestial object of interest (see Section 2.4).
However, the measurements are strictly valid only for an object situated in exactly the
same direction as the reference star. If the field angle increases, the wavefront error
becomes decorrelated because turbulence is distributed along the light propagation
path through the atmosphere. The effect that arises when two objects are separated
by an angle bigger than θ0 is known as angular anisoplanatism. The corresponding
isoplanatic angle θ0 describes the angle at which two speckle images start to look dif-
ferently [99, 139]. For observations at an angle θ of the guide star direction, the phase
variance is calculated as

E
(
σ2

Φ

)
=
(
θ

θ0

)5/3

.

In case of a single layer at height h, the isoplanatic angle is written as [99]

θ0 = 0.31 · r0

h
,

i.e., dependent on the layer altitude and the Fried parameter. For more precise con-
siderations of θ0 we refer the reader to [80, 163].

2.4 Basics on Adaptive Optics
Adaptive Optics (cf, e.g., [99, 174, 209]) is a technology that compensates for the
rapidly changing optical perturbations arising during the imaging process on earth-
bound telescopes and physically corrects for atmospheric blurring that is caused by
turbulence via deformable mirrors in real-time. The correction is usually split into two
steps: First, the distorted wavefronts of a guide star, which is situated in the vicinity
of the astronomical object one wants to observe, are measured by wavefront sensors
(WFS). The obtained information is then used to calculate the actuator commands of
the deformable mirror in order to optimally balance the aberrations by shaping the
mirror appropriately. Finally, the light from both guide star and celestial object is
reflected at the mirror and distortions are removed. Thus, the optimal mirror shape is
determined from wavefront sensor measurements of the emitted light of natural guide
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stars as well as laser guide stars which are produced artificially. Figure 2.4 shows
an Adaptive Optics system running in a closed loop setting. The incoming distorted
wavefronts reach the deformable mirror where they are corrected. Afterwards, the
light – now stemming from corrected waves – is split into two parts by a beam splitter
(BS) and propagates to the high resolution camera and to the WFS. The correspond-
ing wavefront sensor data of the already corrected wavefronts are used to evaluate
the right mirror actuator commands for the next incoming wavefront. Restoration
of the unknown wavefront and further calculation of the optimal mirror deformations
from given sensor measurements is an Inverse Problem which has to be solved within
milliseconds. For the new generation of Extremely Large Telescopes, there is a strong
increase in the computational load due to steadily growing mirror sizes up to 40 m.
As a result, existing control algorithms become challenging and fast reconstruction
methods are more important in order to obtain good corrections in accessible time.

Figure 2.4: Design of an AO system, source [107]. Adaptive Optics improves the
performance of optical systems by deforming a mirror in order to reduce the effect of
wavefront aberrations.

The three main AO-components of a ground based telescope are wavefront sensors, con-
trol algorithms and deformable mirrors. A wavefront sensor provides information on
the incoming phase by measuring light intensity changes caused by wavefront aberra-
tions, the control algorithm links the measurements to the mirror actuator commands,
and deformable mirrors physically correct for the distortions.

2.4.1 AO component: guide star
A bright object which serves as a reference source for AO is named a guide star (GS).
We distinguish between natural guide stars (NGS) and laser guide stars (LGS). In case
of limited sky-coverage, i.e., if there is no bright celestial object in the near vicinity,
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laser beacons are released from the telescope facility into the night sky. They stimulate
the sodium layer at a height of approximately 90 km and serve as artificial guide stars
known as LGS (cf, e.g., [99]). However, three major effects appear for laser guide stars,
namely spot elongation, cone effect, and tip-tilt indetermination [99, 174] and an AO
system does not work without the use of at least one NGS.

In contrast to natural guide stars, for laser guide stars the light source is finitely high.
As a consequence, the light travels down to the Earth’s surface in a cone as shown in
Figure 2.5. This phenomenon is known as cone effect. It needs to be compensated in
atmospheric tomography (cf Section 2.4.5), e.g., by the introduction of layer specific
scaling factors (cf, e.g., [85, 181, 182]).

Figure 2.5: Sketch of cone effect introduced by an LGS, source [6].

The spot elongation is caused by the thickness of the sodium layer. While turbulent
layers are assumed to be infinitely thin, the vertical width of the sodium layer is not
approaching zero. Thus, the scattering of the laser beacon is a small stripe on the
sky rather than a single point source as valid for natural guide stars. As indicated in
Figure 2.6, the source detected on the telescope is elongated and degrades the quality
of the measurements. The originated error increases linearly with the size of the
spot elongation in the direction of the centroid [40] and possibly introduces unwanted
correlation effects between measurements [202].

The laser beam passes the atmosphere when traveling up to the sodium layer and
a second time when being scattered from the sodium layer. As a consequence, the
real position of the LGS remains unknown since tip or tilt modes of the incoming
wavefront cannot be determined. In order to overcome this tip-tilt indetermination, at
least one NGS has to be used in every AO operating system which are later discussed
in Section 2.4.5. Figure 2.7 gives an example illustrating an undetectable tip & tilt
mode induced, e.g., by a layer having different temperature distributions. For more
precise explanations of this effect and solution statements we refer to [184, 208, 225].
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Figure 2.6: Spot elongation caused by an LGS, source [6].

2.4.2 AO component: wavefront sensor
Wavefront sensors (WFSs) provide information on the perturbations of a planar wave
originating from a guide star. Unfortunately, the wavefronts cannot be measured
directly and sophisticated wavefront reconstruction methods need to be applied. Those
heavily depend on the incorporated wavefront sensor type. For an arbitrary WFS
model W , sensor measurements s, and an incoming wavefront Φ, the general relation
is given by

s = W Φ. (2.4)

Figure 2.7: LGS tip-tilt indetermination, source [6]. Light emitted by a GS is refracted
by a wedge of cold air. On the detectors of the telescope, the GS appears dislocated.
However, the true location of the natural guide star is known, and therefore the tip-tilt
indetermination is overcome.
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Several possible choices for the wavefront sensor model W , e.g., Shack-Hartmann or
pyramid wavefront sensors, are discussed below.

Shack-Hartmann sensor

For a Shack-Hartmann (SH) sensor [56, 159, 190], an image of the telescope entrance
pupil is built on a lenslet array. Each of those lenslets forms an image of the reference
source on a CCD detector which is situated behind the lenslet array. The quadratic
area on the CCD detector that is covered by one lenslet is called subaperture. For
undistorted wavefronts, the detected images consist of sharp point sources regularly
arranged in the subapertures. In the presence of atmospheric turbulence, however,
the spots detected behind the lenslet array are blurred and dislocated from the center
of the subapertures as shown in Figure 2.8. The shifts give a measure of the local
wavefront slope averaged over the lenslet area. The dependence between the incoming
wavefront Φ and SH sensor data sSH is linear and represented by

sSH(i, j) =

 1
|Ωij|

∫
Ωij

∂

∂x
Φ (x, y) d (x, y) , 1

|Ωij|

∫
Ωij

∂

∂y
Φ (x, y) d (x, y)


for i, j = 1, . . . , n and Ωij denoting the (i, j)-th subaperture of altogether n × n sub-
apertures.

Figure 2.8: Scheme of a Shack-Hartmann sensor, source [6]. Signals detected from
undistorted and distorted wavefronts are shown as well as a signal captured on the
sensor array which corresponds to a blurred image (from left to right).

Pyramid wavefront sensor

Several of the instruments planned for future ELTs have pyramid wavefront sensors
(PWFS) [164] included as baseline. As illustrated in Figure 2.9, the incoming light is
focused on top of a pyramidal prism. Due to the splitting by the prism, the light prop-
agates into 4 slightly different directions and every intensity pattern is later captured
on a CCD detector. The detector is divided into quadrants and counts the number
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of incident photons over a short exposure time. PWFS measurements are calculated
as specific sums of the intensities (see Chapter 3). The pyramid sensor relates the
incoming wavefront with the measurements in a non-linear way.

In principle, the concept is comparable to a SH sensor with quad-cells, i.e., 4 pixels
per subaperture. For the SH sensor, the lenslets produce multiple images of the light
source through the aperture. In the PWFS, the subdivision is performed in the focal
plane which produces multiple images of the aperture. Based on the close connection
between both sensor types, one of the first wavefront reconstruction ideas for the
PWFS were carried out as applications of SH wavefront reconstruction methods (cf,
e.g., [162]).

Roof wavefront sensor and other sensor types similar to the PWFS

The roof wavefront sensor (see Figure 2.9) can either be seen as a standalone wavefront
sensor or utilized as a simplification of the pyramid sensor. For this sensor type, the
four-sided pyramidal prism is substituted with two orthogonally placed two-sided roof
prisms. As a consequence, x- and y- direction are decoupled [28, 155, 212]. Nowadays
there are several other concepts of pyramid wavefront sensors under investigation: a
generalized PWFS with an arbitrary number (from three to infinity) of facets [3, 41,
51, 59, 219], a digital PWFS which imposes a pyramid-like phase profile on a spatial
light modulator [2, 3], a flattened pyramid or roof WFS [74], a lenslet based PWFS [38,
39, 115], and a sequential PWFS realized with a reflective micromirror array [35, 224].

Figure 2.9: Concept of a pyramid and roof wavefront sensor, source [164, 212].

This Thesis is focused on the four-sided pyramid wavefront sensor. A detailed descrip-
tion of the physical principles and a mathematical derivation of the pyramid sensor
forward models are given in Chapter 3. Wavefront reconstruction methods using pyra-
mid sensor data are later presented in Chapter 4 - 7 on non-segmented pupils and in
Chapter 8 on segmented pupils.
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Further wavefront sensor types

The Zernike wavefront sensor [145] is known for its excellence in terms of noise prop-
agation, i.e., the device has an extremely high sensitivity to photon noise at all spatial
frequencies [92].
The curvature sensor [53, 175] detects the Laplacian ∇2Φ of the wavefront Φ.
For the Mach-Zehnder interferometer [136], the light is split into 2 paths by a semi-
transparent beam splitter. Subsequent superposition of the two paths causes interfer-
ence patterns which are detected and contain information on the wavefront.
In another wavefront sensor type, the Lateral Shear Interferometer [53], light is re-
flected twice on a transparent shear plate. An interference pattern in the outgoing
path caused by the lateral shift is registered by appropriate detectors and gives infor-
mation on the WF.

2.4.3 AO component: deformable mirror
Deformable mirrors (DMs) (cf, e.g., [99, 174]) are under development since the early
1970s with the initiation of defense-oriented research as it was the case for AO itself.
Under their flexible mirror surfaces, there are hundreds of actuators located that will be
adjusted in real-time to counteract the atmospheric distortions by applying voltages.

Figure 2.10 illustrates several DM types. Segmented DMs only have up to three degrees
of freedom (piston and two axes of tilt), but a good frequency response and a large
dynamic range since each element is unconstrained. These mirror types are considered
as a simple and low risk concept. Drawbacks of the segmented control are diffraction
effects induced by the gaps between the segments and the high fitting error compared
to another mirror type, the continuous face-sheet DM, when having the same number
of actuators. Face-sheet DMs have good stability over time and temperature changes
due to the use of the continuous faceplate that produces local smooth distortions when
applying considerable force. However, the stroke with this mirror type is limited by
the stress that actuator motion possibly induces in the faceplate.

For the ELT, the 2.5 m deformable fourth mirror will consist of a flat segmented thin
shell composed of 6 identical patterns. Deformation of the DM will be achieved by the
motion of about 5300 actuators within a time of less than 1 millisecond. As mirror
geometries, we consider in this Thesis either the currently planned actuator positions
of the ELT M4 as shown in Figure 2.11 or the Fried geometry with equidistant actuator
positions [32].

2.4.4 AO component: real-time control unit
The real-time control unit computes the commands of the mirror actuators from wave-
front sensor measurements. Based on the knowledge of the incoming wavefront Φ, volt-
ages are applied on the actuators in order to change the shape of the DM, and thus
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Figure 2.10: Different DM types, source [52].

Figure 2.11: Actuator positions of the ELT M4 geometry implemented in the end-to-
end simulation tool Octopus (cf Section 2.5.3), source [110, 149]. Additionally, the
telescope spider positions, which are considered in Chapter 8, are shown.
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compensate atmospheric aberrations by repeating a damped version of the wavefront
shape with a negative sign.

Nowadays, successfully running control algorithms on telescopes use matrix-vector
multiplication (MVM) [174]. The main idea is based on an interaction matrix that
maps mirror actuator commands to wavefront sensor measurements. Therefore, the
required mirror commands are computed by applying the pseudo-inverse of the interac-
tion matrix, called control matrix, to the measurement vector. While results of MVM
methods are very good in quality, the computational load is immense for large-scale
AO. Future telescopes will have a high number of actuators (104−105) to be controlled
at a frequency of around 500−3000 Hz. Due to the computational complexity ofO(n2

a),
where na is the total number of active mirror actuators, the application of interaction-
matrix based methods on existing real-time computer systems is extremely demanding
since further, the interaction matrix does not fulfill the sparsity assumption. Hence,
the development of fast control algorithms which provide high reconstruction qualities
becomes indispensable for future ELT-sized telescopes. Besides MVM, very efficient
reconstruction algorithms having a lower computational complexity have been devel-
oped in the last years, e.g., [179, 204] for Shack-Hartmann wavefront sensors or several
methods for pyramid sensors reviewed in Chapter 7. Interaction-matrix-based methods
are often the benchmark against which our new model-based wavefront reconstruction
approaches are compared in this Thesis (cf, e.g., Section 5.3.3).

Decoupling of wavefront estimation and wavefront control

The impact on the mirror of pushing the i-th actuator is described mathematically by
the actuator’s influence function IFi. The relation between the reconstructed wave-
front Φ and the overall na DM influence functions (IFi)nai=1 can be represented by

Φ (x, y) =
na∑
i=1

aiIFi (x, y) . (2.5)

For interaction-matrix-based wavefront reconstruction approaches (as described in Sec-
tion 8.2), the steps of wavefront reconstruction and projection onto the DM are often
coupled. In this case, the interaction matrix is generated by only using the DM spe-
cific influence functions or modes as basis functions. The matrix-free, model-based
methods (as, e.g., introduced in Chapter 4 - 6) are more general in the sense that WF
reconstruction is completely decoupled from the DM and can be used in combination
with an arbitrary DM geometry. After a successful wavefront estimation, an additional
projection onto the DM is applied. Decoupling of WF estimation and WF correction
is repeated in more depth in Section 8.2.2.

2.4.5 AO systems
Single Conjugate Adaptive Optics (SCAO) (cf Figure 2.12) is the most simple AO
system. It uses only one natural guide star, that has to be situated sufficiently near the
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astronomical object one wants to observe, one wavefront sensor, and one deformable
mirror conjugated to the ground layer. Since for SCAO we are interested in an optimal
image quality in the center of the field of view we assume the light from the guide star
(and the celestial object we want to observe) traveling approximately parallel to the
optical axis. This causes atmospheric perturbations to simply add up.

Because of high contrast in brightness between small planets and giant stars they orbit,
direct imaging and characterization of extra-solar planets is a big challenge in modern
astronomy. Telescope instruments such as EPICS for the ELT are under development
to allow high contrast imaging (HCI) at small angular separations. HCI-instruments
will include an eXtreme Adaptive Optics (XAO) system which is a SCAO system using
a huge number of subapertures and mirror actuators.

Figure 2.12: Principle of SCAO, source [150].

Besides SCAO and XAO systems, there exist more advanced AO operating modes
such as Ground Layer Adaptive Optics (GLAO), Multi Conjugate Adaptive Optics
(MCAO)[5], Multi Object Adaptive Optics (MOAO)[61], and Laser Tomography Adap-
tive Optics (LTAO), e.g., for applications over a wide field of view in combination with
the usage of laser guide stars. In Figure 2.13 the concepts of several AO operating
modes are illustrated.
The more complex AO systems rely on atmospheric tomography which is a limited
angle tomography problem and thus is severely ill-posed. The aim is to reconstruct a
discrete layered atmosphere from input data of multiple guide star directions.
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In this Thesis, only SCAO and XAO systems are simulated for which no atmospheric
tomography is needed.

Figure 2.13: Schemes of fundamental AO operating modes, source [6]. The red/green
stars indicate natural/laser guide stars, the magenta spirals stand for the astronomical
object one wants to observe and the blue areas will be corrected by the AO system.

2.4.6 Open and closed loop configurations

There are two possibilities of aligning the DM and the corresponding WFS in the
optical path of an AO system: If the WFS is arranged before the DM, measurements
of the uncorrected wavefront are sensed. This configuration, which is installed in
systems such as MOAO, is called open loop (OL) control.
Figure 2.4 shows a closed loop (CL) system. The DM is situated before the WFS in the
optical path, i.e., the WFS measures already corrected residual wavefronts. SCAO,
MCAO, and LTAO systems run in closed loop.
For deriving the current DM shape ΦDM

t in a CL system, only an update ΦDMupdate
t is

computed and a damped version of it (with a properly chosen loop gain γCL) is added
to the previous DM shape ΦDM

t−1 , i.e.,

ΦDM
t = ΦDM

t−1 + γCLΦDMupdate
t .

Another control system called pseudo open loop control (POLC) [54] offers an alter-
native to integrator control in closed loop systems but has to be considered carefully
for non-linear wavefront sensors such as the pyramid sensor.

2.5 Numerical analysis
Finally, we give a short overview on several measures which are crucial in AO sys-
tems, define quality metrics used to specify the AO correction and briefly describe the
simulation environment utilized for the numerical analysis of the developed wavefront
reconstruction algorithms.
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2.5.1 Measures in AO
Wavelength

Wavefront sensing can be performed in different wavelengths. In the METIS simu-
lations, we consider a PWFS sensing in the near infrared at a sensing wavelength of
λ = 2.2 µm (K-band) and in the EPICS instrument a PWFS sensing in the visible
at λ = 0.7 µm. Several parameters are wavelength-dependent such as, e.g., the mod-
ulation parameter (cf (3.7)) of the modulated pyramid sensor. The AO performance
can significantly change with variations of λ. Generally, Adaptive Optics correction is
easier at longer wavelengths – a fact that was experienced to be crucial in the presence
of wide telescope spiders as analyzed in Chapter 8.

The quality performance of an AO system can be evaluated in different wavelengths.
Mostly, we use the K-band as evaluation wavelength λsciene in the numerical simula-
tions contained in this Thesis.

Photon flux

The intensity of the light reaching the telescope pupil and being captured by the
wavefront sensor is measured by the number of photons nph falling on one subaperture
of the WFS per frame. We distinguish low photon flux from high photon flux where
the threshold is not a fixed number but heavily depending on the signal-to-noise-ratio.
One possibility to increase the number of photons per subaperture is to enlarge the
subaperture size. However, an enlargement brings several drawbacks caused by dimin-
ished sensor resolution. Additionally, we experienced improved reconstruction quality
for smaller subaperture sizes because the grid on which WFS measurements are avail-
able becomes finer. Therefore, it is inevitable to find a good balance between both
parameters.

Sensor noise

The two most dominant error sources are the photon noise described by the signal-to-
noise-ratio (SNR) and the read-out noise. The SNR identifies the noise in the sensor
output caused by quantum effects on the CCD detector and depends on the sensor size,
the number of subapertures, the number of pixels, and the photon flux. The read-out
noise is caused by unavoidable uncertainties and latency during the read-out process
of the CCD detector. If we combine the two main error sources with additional ones
such as those stemming from dead CCD-pixels and describe them by one probabilistic
quantity η, the more realistic model for WFS operation compared to (2.4) is

s = W Φ + η.

Keeping the error propagation from s to Φ low needs the usage of regularization
methods during the wavefront reconstruction process.
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Minimum subaperture illumination

Due to, e.g., obstructions caused by the secondary mirror or its support structures,
not all subapertures are illuminated by the same amount of light and it may happen
that several of them are not sufficiently illuminated to produce reliable measurements.
Therefore, one has to decide which subapertures are active and utilized for wavefront
reconstruction. Only if a subaperture is illuminated more than a certain percentage
given by the minimum subaperture illumination threshold, it is considered as active.

Frame rate

The time frame during which the CCD detector senses the incident photons is given
by the frame rate in Hertz. Approximately half of this time frame is available for
wavefront reconstruction. The frame rate in our simulations ranges from 500 Hz to
more than 3 kHz and directly determines the duration of one time step in the used
end-to-end simulation specified in Section 2.5.3.

2.5.2 Quality measure: Strehl ratio
The reconstruction quality is quantified in terms of the short-exposure (SE) and the
long-exposure (LE) Strehl ratio. This quality metric commonly used in astronomical
communities is defined as the ratio of the peak aberrated image intensity from a point
source compared to the maximum attainable intensity for an ideal optical system
limited only by diffraction over the telescope aperture. This means that the Strehl
ratio [139, 174, 178] relates the point spread function PSFΦ obtained within the AO
correction to the diffraction limited point spread function PSFtel of the telescope as
presented in Section 2.2 by

SR = PSFΦ (0)
PSFtel (0) .

It is evaluated at the origin which gives a relation between its respective peaks in
case they are perfectly centered. If the peak of PSFΦ is slightly off-centered due to
atmospheric aberrations, the resulting Strehl ratio is reduced. Generally, the Strehl
ratio has values 0 ≤ SR ≤ 1 with 1 being the maximum Strehl ratio induced by a
perfect atmospheric correction.

The SE Strehl ratio SR can be estimated by Maréchal’s approximation (cf, e.g., [173])
as

SR (Φ) ≈ exp
(
− (2π · σ (Φ) /λscience)2

)
.

The term λscience denotes the observing wavelength and σ (Φ) the root-mean-square
deviation of the wavefront Φ, i.e.,

σ2 (Φ) = 1
|Ω|

∣∣∣∣∣∣Φ− Φ
∣∣∣∣∣∣2
L2(Ω)

with Φ = 1
|Ω|

∫
Ω

Φ (x, y) d (x, y) ,
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where Ω denotes the telescope aperture. The average on-axis SE Strehl ratio over the
whole observing time is related by the LE Strehl ratio.

2.5.3 Simulation environment
Testing developed AO configurations and control algorithms requires accurate sim-
ulation environments. In this Thesis, we use ESO’s official end-to-end simulation
tool Octopus [129, 130]. The phase screens generated therein follow the von Karman
turbulence model. The simulation tool is written in C-code, but we chiefly run our
algorithms via an interface in Matlab. After reconstruction of the incoming wavefront
and identification of the corresponding DM commands, the SE and LE Strehl ratios
are derived from the resulting PSF. Although Octopus is implemented in a massive
parallel manner, simulating a few seconds of real-time may take several hours due to
the large scale of the AO systems for ELTs having thousands of actuators to control.
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Chapter 3

The pyramid sensor model

Having a look at the detailed representation of the forward models of the pyramid
wavefront sensor lays the mathematical foundation for wavefront reconstruction in
which the aim is to calculate the undistorted wavefront from given sensor measure-
ments. In Section 3.1 we start with an introduction to the physical principles of a
pyramid sensor and a review on state of the art pyramid sensor configurations. We
derive and analyze new mathematical models based on distribution theory for both the
non- and modulated pyramid sensor in Section 3.2. First, we focus on the transmission
mask modeling approach in Section 3.2.1, which ignores the phase shifts introduced
by the pyramidal prism and models the prism facets as transmitting only. Later on, in
Section 3.2.2, we consider the more complicated phase mask model taking interference
effects between the four pupils into account. In Section 3.3 we analyze the non-linear
forward operators describing the pyramid sensor and additionally investigate the ba-
sic principles of the roof wavefront sensor either serving as an approximation of the
pyramid sensor or being seen as a standalone WFS. In order to simplify the problem
of solving the WFS equation, we calculate linearizations for roof wavefront sensors in
Section 3.4. Furthermore, in Section 3.5, we consider the underlying operators in the
Fourier domain and evaluate adjoint operators which will be necessary for the applica-
tion of iterative methods, e.g., gradient based algorithms or Landweber iteration, for
wavefront reconstruction addressed in Chapter 5. Finally, Section 3.6 contains details
on the discretization of the continuous pyramid sensor model.
This Chapter contains parts of the work presented in [108] as a collaboration with
Iuliia Shatokhina and Ronny Ramlau.

3.1 Pyramid sensor modeling: state of the art
Wavefront reconstruction methods heavily depend on the incorporated wavefront sen-
sor. As such, the pyramid wavefront sensor is gradually gaining more and more atten-
tion from the Adaptive Optics community due to its improved signal-to-noise ratio,
robustness to spatial aliasing and adjustable spatial sampling compared to the other
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popular wavefront sensor choice — the Shack-Hartmann sensor. Several theoretical
studies [28, 64, 65, 125, 165, 166, 191, 211, 212, 213, 216] including numerical simula-
tions and laboratory investigations with optical test benches [17, 18, 93, 135, 157, 207,
215] have confirmed the advantages of pyramid wavefront sensors while additionally
promising surveys were operated on sky [69, 76, 89, 154, 158]. The first single star
AO loop was closed on AdOpt@TNG at the Telescopio Nazionale Galileo [167] with a
PWFS. In recent years, remarkable operational results have been reported at the 8 m
Large Binocular Telescope (LBT) [67, 68, 153]. In addition to the LBT, the pyramid
sensor is integrated in the AO systems of the Subaru Telescope (SCexAO), the Magel-
lan Telescope (MagAO), the Mont Megantic Telescope (INO Demonstrator), and the
Calar Alto Telescope (PYRAMIR).

The current development of a new era of Extremely Large Telescopes with primary
mirrors of 25−40 m in diameter brings new challenges to the field of Adaptive Optics.
For ELTs, pyramid sensors show enhanced performance in real life settings, e.g., they
provide the ability to sense differential piston modes induced by diffraction effects
of realistic telescope spiders that support secondary mirrors and perform even under
significant levels of non-common path aberrations [48, 71]. Thus, pyramid wavefront
sensors are going to be included in many ELT instruments [23, 42, 48, 71, 83, 84, 122,
134, 141, 146, 211].

Besides astronomical applications, the pyramid sensor is considered as device in adap-
tive loops in ophthalmology [34, 47, 51, 114] and microscopy [112, 113]. The underlying
concepts are comparable to atmosphere induced perturbations sensing for adaptive op-
tics in astronomy. In microscopy, the pyramid sensor is introduced for direct phase
detection. Unstained cellular media sometimes appear transparent. Hence, measuring
the imprinted phase changes induced by variations in the index of refraction is nec-
essary for the observation of biological structures. For adaptive optics systems in the
eye, the pyramid sensor is used to perform high efficient and flexible wavefront sensing
to compensate ocular aberrations.

3.1.1 Physical design of a pyramid wavefront sensor
The inventor of the PWFS for astronomical investigations was R. Ragazzoni [164,
165] in the 1990s. As seen in Figure 3.1, the wavefront sensor is based on a static or
oscillating pyramidal optical component that splits the light into four beams providing
information on the intensity of the aberrated wavefront. The glass prism is situated
in the focal plane of the telescope pupil. The incoming light of a star is focused by the
telescope onto the pyramidal prism apex. The prism divides the field into quadrants by
propagating the light in slightly different directions. A relay lens after the prism acts
as a re-imager and creates four different images of the pupil on the detector. A decisive
physical property of the pyramid sensor is the beam divergence of the incorporated
pyramidal prism [4]. The divergence angle of the prism describes the splitting of the
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Figure 3.1: Optical setting of a PWFS, source [108].

starlight and affects the relative distance between the four intensity patterns falling
on the CCD-detector.

The most common pyramidal glass prism models are the so called phase mask and
transmission mask model. While the phase mask model takes interference effects be-
tween the beams falling onto the detector into account, the transmission mask model
does not. The latter ignores the phase shifts introduced by the pyramidal prism and
models the prism facets as transmitting only.

Under unfavorable conditions it might occur that the incoming beam is not exactly
focused on the spot of the pyramidal prism and light doesn’t fall on every side of the
pyramid. Hence, the spot of the pyramid is modulated (usually circularly). At the cost
of sensitivity, the modulation of the beam strengthens the linearity and increases the
dynamic range of the PWFS [38, 72, 73, 166, 212]. There exist several possibilities to
accomplish a dynamic modulation of the beam. In [164] they describe an approach in
which the prism itself is physically rotated. Alternatively, one can use a steering mirror
[28, 131] or a static diffuse optical element [131]. A drawback of the pyramid sensor
operated with modulation is the generation of heat, which makes the application in
cryogenic environments difficult.

Pyramid wavefront sensor measurements are provided on an equally spaced grid di-
vided into subapertures, where the maximum number of available subapertures in a
row or column is given by n = D/d with D the primary mirror diameter of the tele-
scope and d the subaperture size. The latter is fixed according to the physical setup
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of the telescope instrument (availability of corresponding devices such as the CCD
detector) in advance. The number of active subapertures N ≤ n2 depends on the
telescope and mirror geometry and a suitable illumination factor that rejects subaper-
tures receiving too little incident photons in order to produce usable measurements. In
contrast, na corresponds to the number of active mirror actuators that will be poked
in order to give the deformable mirror the appropriate shape and therefore depends
on the incorporated deformable mirror geometry. Often, na is comparable to N and
therefore we do not strictly distinguish between na and N when considering numerical
complexities in the Thesis.

On the CCD detector, each image of the aperture is split into subapertures. For each
subaperture, the signal in x- and y-direction is given by the formula [212]

sx(x, y) = [I01(x, y) + I00(x, y)]− [I11(x, y) + I10(x, y)]
I0

,

sy(x, y) = [I01(x, y) + I11(x, y)]− [I00(x, y) + I10(x, y)]
I0

,

(3.1)

where Ii(x, y), i ∈ {1, 2, 3, 4} denotes the intensity located at (x, y) in quadrant i
(cf Figure 3.1) and I0 represents the average intensity over the whole detector plane.

As derived in [212] and shown in Figure 3.2, the pyramid sensor acts either similar to
a slope or a direct phase sensor depending on the spatial frequencies of the incoming
wavefront. The sensor’s response to low frequencies is linear and stagnates for higher
spatial frequencies, i.e., the signal-to-noise ratio is the same at all those frequencies.
The transition between both regimes depends on the modulation amplitude α and the
wavefront sensing wavelength λ. In particular, the modulation amplitude controls to
some extend the linearity of the sensor’s response. In the absence of oscillation, the
sensor is fully comparable to a Foucault knife-edge test [87] and one mostly benefits
from the characteristics of the PWFS acting as a phase sensor.

Within geometric optics the modulated pyramid sensor was first seen similar to the
linear SH sensor, i.e., as a slope sensor with higher sensitivity [63, 164, 166, 213]. When
the non-modulated sensor was investigated in more depth, e.g., in [123, 124, 165, 222],
a connection to the Hilbert transform was found. As analytically derived in [125], the
sensor without modulation can be represented as non-linear combinations of 1d and 2d
Hilbert transforms of the sine and cosine of the incoming phase in the Fourier optics
framework. The direct inversion of this mathematical model seems to be impossible.
Considering modulation, which is described by a zero-order Bessel function of the first
kind and an additional integral of a cosine, further complicates the model as later seen
in Definition 3.2.

Approximating the pyramid sensor model by a roof wavefront sensor (see Figure 2.9
right) seems to be a promising possibility to make the development of model-based
methods easier. For this type of sensor, two orthogonally placed two-sided roof prisms
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Figure 3.2: Fourier signal-to-noise ratio curves, source [212]. The dotted line repre-
sents the response to varying spatial frequencies (plotted on the x-axis) for a Shack-
Hartmann sensor and the solid line for a pyramid sensor. One can clearly identify both
regimes of the pyramid sensor with the threshold α/λ. The system’s cut-off frequency
is denoted by Fc and the subaperture size by d.

instead of the pyramidal one are used. The orthogonality of the roof leads to a de-
coupling of the dependence on the incoming phase in x- and y-direction. For roof
wavefront sensors, a linear modulation path is additionally considered in the literature
as an approximation to the circular one.

The simplification of using the roof sensor often comes together with a linearization of
the highly non-linear Fourier optics based pyramid sensor model examined more closely
in Section 3.4. However, after several years of using the linearized roof sensor [28] as a
simplification, especially for those algorithms developed by the AAO team, the trend
nowadays is to consistently come closer to the full pyramid sensor model in order to
improve the existing reconstruction algorithms and reach even more accurate wavefront
estimates.

3.2 Pyramid sensor modeling: new mathematical
foundation

Control of a deformable mirror requires the knowledge of the wavefront shape. Un-
fortunately, wavefronts are not measured directly. The generally non-linear relation
between pyramid wavefront sensor measurements s and the wavefront Φ of the incom-
ing light can be described via the equation

s = P Φ + η, (3.2)

where the operator P represents a mathematical model of the pyramid wavefront sen-
sor and η denotes the unpredictable measurement noise. Restoration of the unknown
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incoming wavefront Φ from noisy measurements s and further calculation of the op-
timal mirror deformation is an Inverse Problem. In order to develop model-based
high-quality wavefront reconstruction algorithms, the derivation of a mathematical
model accurately describing the pyramid sensor is necessary.

Different pyramid wavefront sensor forward models have already been considered mul-
tiply in the literature, for instance the phase mask model in [30, 86, 214] and the
transmission mask model in [30, 64, 86, 125, 166, 214]. The models of the pyramid
and roof wavefront sensors, which build the foundation of the development of model-
based reconstruction algorithms by the AAO team, have been presented in [191] in
a Fourier optics setting. In the following, we will focus on a correct mathematical
derivation of these models using distribution theory, but finally ending up with the
same pyramid and roof sensor measurements as, e.g., in [191]. Note that we have
already introduced the transmission mask scheme in a distributional sense in [108].

Figure 3.3: Borders of the annular aperture mask for fixed x and y, source [108]. The
domain Ωx changes with x and Ωy with y respectively. In some cases the intervals are
split due to the central obstruction of the telescope.

We start with restricting the availability of measurements to the size of the region
captured by the sensor. For several telescope systems the pupil is annular instead of
circular since a secondary mirror shades the primary mirror, making the area of central
obstruction hardly attainable for photons. Thus, the remaining light in the area of the
central obstruction does not produce reliable measurements. Moreover, the incoming
phases are defined on R2 but for the control of the deformable mirror we consider the
reconstructed wavefront shape only on a restricted domain (bounded by the size of
the telescope pupil).

For the following considerations, we describe the annular telescope aperture mask by
Ω = Ωy × Ωx ⊆ [−D/2, D/2]2 as shown in Figure 3.3. Single lines of the annular
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aperture are represented by Ωx = [ax, bx] and Ωy = [ay, by], with ax < bx, ay < by
being the borders of the pupil for fixed x and y correspondingly. The sensor provides
measurement on the region of the CCD-detector D. Throughout the Thesis, we do
not distinguish between pupil and CCD-detector and assume D = Ω. Further, the
limitation onto the CCD detector (indicated as multiplication with a characteristic
function of D) is not marked explicitly for the underlying operators for simplicity
of notation. However, please keep in mind the compact support of the considered
functions because of the restricted size of the aperture and the CCD-detector. For
instance, we consider the norms in L2 (R2) but since the operators map from and
to functions with compact support on Ω it is equivalent to considering the norms in
L2 (Ω).

Let Φ ∈ H11/6 (R2) denote the phase screen in radians coming into the telescope. Using
wave optics based models and assuming constant amplitude over the full telescope pupil
Ω = Ωy×Ωx the complex amplitude (wave) ψaper corresponding to this incoming phase
reads as

ψaper(x, y) = XΩ(x, y) · exp (−iΦ(x, y)) .

Note that ψaper ∈ Lp (R2) for all 1 ≤ p ≤ ∞ due to the compact support of ψaper,
the continuity of Φ, and further the continuity of ψaper on Ω. In order to assume
the continuity of ψaper on R2, we slightly modify the telescope aperture mask XΩ and
approximate it by X ε

Ω ∈ C∞0 (R2) fulfilling XΩ = X ε
Ω on Ω.

The idea of the extended mask is to smoothen the sharp edges of the telescope pupil
in order to guarantee ψεaper ∈ H11/6 (R2) using

ψεaper(x, y) := X ε
Ω(x, y) · exp (−iΦ(x, y)) .

The above assertion is fulfilled for an approximation of the aperture mask denoted by
X ε

Ω ∈ C∞0 (R2). One possible representation of X ε
Ω can be constructed utilizing the

following Lemma in which we consider the sets Ω = Ωy × Ωx = [ay, by] × [ax, bx] and
Ωε = (ay − ε, by + ε)× (ax − ε, bx + ε) for a small ε > 0, i.e., Ω ⊂ Ωε.

Lemma 3.1 (Lemma 4.2, [206]). Let Ω ⊂ R
n and Ωε ⊂ R

n be bounded sets with
Ω ⊂ Ωε and Ωε open. Then, there exists a real-valued function X ε

Ω ∈ C∞0 (Ωε) with
0 ≤ X ε

Ωy×Ωx (z) ≤ 1 for z ∈ Ωε and X ε
Ω (z) = 1 for z ∈ Ω.

Outside of Ωε we extend X ε
Ω with zeros and obtain X ε

Ω ∈ C∞0 (R2).

We investigate the construction of the new smooth aperture mask X ε
Ω in more detail.

As in [206], we consider the smooth function f ∈ C∞0 (R2),

f (z) :=


c exp

(
− 1

1− |z|2

)
, for |z| < 1,

0, for |z| ≥ 1,
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having compact support on [−1, 1]2. The constant c ∈ R is chosen such that∫
R2

f(z) dz =
∫
|z|≤1

f(z) dz = 1.

Additionally, we introduce
f ε (z) := 1

ε2
f
(
z

ε

)
for ε > 0. Using this function, S. L. Sobolev established a method [199] which is
utilized for the smoothing of the characteristic function describing the telescope pupil.
With the coordinate transformation

z − εz′ = z′′, (3.3)

for XΩ ∈ Lp (R2), 1 ≤ p ≤ ∞ we build the average function X ε
Ω ∈ C∞0 (R2) by

X ε
Ω(z) s.123=

∫
R2

XΩ (z − εz′) f (z′) dz′

(3.3)=
∫
R2

1
ε2
XΩ (z′′) f

(
z − z′′

ε

)
dz′′

s.123=
∫

|z−z′′|≤ε

f ε (z − z′′)XΩ (z′′) dz′′.

Altogether, ψεaper is an element of H11/6 (R2) using that from Φ ∈ H11/6 it follows
e−iΦ ∈ H11/6 as stated in [25, 26].
The adaption of the aperture mask is necessary to guarantee a well-defined mathe-
matical derivation of the pyramid wavefront sensor model. Please note that∣∣∣∣∣∣XΩ −X ε

Ωy×Ωx

∣∣∣∣∣∣
L2(R2)

= O
(
ε2
)
,

and therefore X ε
Ω is an arbitrarily good approximation of the aperture mask XΩ.

The following physical argument supports the usage of a smoothed aperture mask
Ωε instead of the one with the sharp edges. Both masks have a compact support.
Therefore, on the Fourier domain they are both represented with infinite spectra.
Since ε < d (with d denoting the telescope subaperture size) is small, the difference
between the two masks, when looking in the Fourier domain, appears only in the very
high frequency components. Because the pyramidal prism is a physical device of finite
size, it anyway cuts off high frequency components of the input. Additionally, the
sensor brings spatial discretization in the model due to subaperture averaging. As a
result, the spectra of the resulting sensor data contain frequencies only up to a given
cut-off frequency defined via the subaperture size d as ξcut = 1/(2d). Therefore, in
practice there is no difference between the smoothed and the sharp aperture mask. In
the following and throughout the Thesis, we write XΩ but keep in mind that we always
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mean X ε
Ω for a small ε > 0 for the pyramid wavefront sensor model to be well-defined.

As a next step, we consider the point spread function (PSF) of the glass pyramid.
The PSF is the inverse Fourier transform of the optical transfer function (OTF) of the
pyramidal prism

PSFpyr = F−1
2d {OTFpyr}. (3.4)

We distinguish between two models of the pyramidal mask, namely the transmission
mask model and the phase mask model.

3.2.1 Mathematical derivation of transmission mask model
We start with a mathematical derivation of the pyramid wavefront sensor model which
is based on the transmission mask. For the pyramid wavefront sensor, we only consider
the non-modulated and the sensor with circular modulation since they make sense from
the physical point of view.

Definition 3.2. We introduce the operators P {n,c}x in x-direction given by
(

P
{n,c}
x Φ

)
(x, y) :=

1
π
XΩ(x, y) p.v.

∫
Ωy

sin [Φ(x′, y)− Φ(x, y)] · k{n,c}(x′ − x)
x′ − x

dx′ (3.5)

+
1
π3 XΩy (x) p.v.

∫
Ωy

∫
Ωx

∫
Ωx

sin [Φ(x′, y′)− Φ(x, y′′)] · l{n,c}(x′ − x, y′′ − y′)
(x′ − x)(y′ − y)(y′′ − y)

dy′′ dy′ dx′

and P {n,c}y in y-direction given by

(
P
{n,c}
y Φ

)
(x, y) :=

1
π
XΩ(x, y) p.v.

∫
Ωx

sin [Φ(x, y′)− Φ(x, y)] · k{n,c}(y′ − y)
y′ − y

dy′ (3.6)

+
1
π3 XΩx (y) p.v.

∫
Ωy

∫
Ωx

∫
Ωy

sin [Φ(x′, y′)− Φ(x′′, y)] · l{n,c}(x′′ − x′, y′ − y)
(x′ − x)(y′ − y)(x′′ − x)

dx′′ dy′ dx′.

The functions k{n,c} are defined by kn(x) := 1, kc(x) := J0(αλx), and the functions
l{n,c} by ln(x, y) := 1 and

lc(x, y) := 1
T

T/2∫
−T/2

cos[αλx sin(2πt/T )] cos[αλy cos(2πt/T )] dt.

The function J0 denotes the zero-order Bessel function of the first kind given by

J0(x) = 1
π

π∫
0

cos(x sin t) dt = 1
π

π∫
0

cos(x cos t) dt
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and αλ the modulation parameter defined by

αλ = 2πα
λ

(3.7)

with α = rλ/D for a positive integer r representing the modulation radius, λ the
sensing wavelength, and D the telescope diameter.

Theorem 3.3. The relation between the pyramid wavefront sensor data and the in-
coming wavefront following the transmission mask model is given by

s{n,c}x (x, y) = −1
2

(
P {n,c}x Φ

)
(x, y),

s{n,c}y (x, y) = 1
2

(
P {n,c}y Φ

)
(x, y),

(3.8)

where P {n,c} denote the pyramid sensor operators defined in (3.5)-(3.6).

Proof. Within the transmission mask approach [125], the OTF only takes splitting of
the light into account and ignores the phase shifts introduced by the pyramid facets.
It is represented as a sum of 2d Heaviside functions

OTFpyr (ξ, η) =
1∑

m=0

1∑
n=0

Tmn (ξ, η) (3.9)

with

Tmn (ξ, η) = H2d [(−1)m ξ, (−1)n η] :=
1, if (−1)m ξ ≥ 0, (−1)n η ≥ 0,

0, otherwise.

The 2d Heaviside function is the product of two 1d Heaviside functions

H2d(ξ, η) = H1d(ξ) ·H1d(η)

and the 1d Heaviside function can be represented as

H1d(ξ) = 1
2 + 1

2 · sgn(ξ).

Therefore,

H2d(ξ, η) = 1
4 [1 + sgn(ξ) + sgn(η) + sgn(ξ) · sgn(η)] ,

which for gm (ξ) := sgn ((−1)m ξ) results in

Tmn(ξ, η) = 1
4 [1 + sgn((−1)mξ) + sgn((−1)nη) + sgn((−1)mξ) · sgn((−1)nη)]

= 1
4 [1 + gm (ξ) + gn (η) + gm (ξ) · gn (η)] .
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Please note that in the above notation, gm is always meant as function of the first vari-
able ξ and gn as function of the second variable η for 2d considerations. Furthermore,
Fx will denote the 1d Fourier transform in the first variable and Fy the 1d Fourier
transform in the second variable. With (3.4) and due to the linearity of the Fourier
transform, the PSF of the pyramid is represented as a sum of four PSFs

PSFpyr = F−1
2d

{ 1∑
m=0

1∑
n=0

Tmn
}

=
1∑

m=0

1∑
n=0
F−1

2d {Tmn}

=
1∑

m=0

1∑
n=0
F−1

2d

{1
4 [1 + gm + gn + gm · gn]

}
︸ ︷︷ ︸

=:PSFmnpyr

.
(3.10)

The OTF is a sum of products of functions depending either on ξ or η. Hence, the
inverse 2d Fourier transform reduces to products of 1d inverse Fourier transforms. For
PSFmn

pyr , we obtain

PSFmn
pyr (x, y) = 1

4
[
F−1
x {1} (x) · F−1

y {1} (y)

+ F−1
x {gm} (x) · F−1

y {1} (y)
+ F−1

x {1} (x) · F−1
y {gn} (y)

+ F−1
x {gm} (x) · F−1

y {gn} (y)
]
.

The Fourier transforms of the involved constant and signum functions do only exist in
a distributional sense.

For test functions ϕ, we introduce the delta distribution δ defined as 〈δ, ϕ〉 = ϕ(0).
This application is well-defined for continuous functions, e.g., ϕ ∈ H1/2+ε (R), and on
account of this δ ∈ H−1/2−ε (R) for ε > 0. The distribution (p.v. 1

x
) is defined via the

Cauchy principal value by〈(
p.v.

1
x

)
, ϕ
〉

= lim
ε→0+

∫
|x|>ε

ϕ(x′)
x′

dx′ = π (Hϕ) (0)

for the 1d Hilbert transform operator

(Hϕ) (x) := 1
π
p.v.

∫
R

ϕ (x′)
x′ − x

dx′. (3.11)

Since the 1d Hilbert transform H : L2 (R) → L2 (R) is a well-defined operator (see,
e.g., [29, Theorem 8.1.12]), the evaluation of 〈(p.v. 1

x
), ϕ〉 is well-defined in a distribu-

tional sense for ϕ ∈ H1/2+ε (R) ⊂ L2 (R), which results in (p.v. 1
x
) ∈ H−1/2−ε (R).

Specifically,
F−1
x {1}(x) =

√
2π · δ(x) ∈ H−1/2−ε (R) ,
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F−1
x {sgn(·)}(x) = i ·

√
2
π
· p.v. 1

x
∈ H−1/2−ε (R) ,

and in the same way

F−1
x {gm} (x) = i ·

√
2
π
· p.v. 1

(−1)mx = i · (−1)m ·
√

2
π
· p.v. 1

x
∈ H−1/2−ε (R) .

Using the notations δx in case the delta distribution is only applied in x-direction and
δy accordingly,

vx :=
(
p.v.

1
x

)
and vy :=

(
p.v.

1
y

)
as well as vxy :=

(
p.v.

1
xy

)
,

the 2d PSFmn
pyr ∈ H−1−ε (R2) is given by

PSFmnpyr = π

2 · δxδy + 1
2 · i · (−1)m · vxδy + 1

2 · i · (−1)n · δxvy + 1
2π · (−1)m+n+1 · vxy.

According to the standard description of optical systems, the wave ψdet coming to
the detector plane is the inverse 2d Fourier transform of the complex amplitude after
the pyramid

(
ψεaper ·OTFpyr

)
which results (by application of the convolution theo-

rem (A.1)) in a convolution of the incoming complex amplitude ψεaper with the point
spread function of the glass pyramid as described, e.g., in [125]. This step can mathe-
matically be written in the sense of distributions as a shifted PSF distribution applied
to the complex amplitude of the incoming phase

ψdet(x, y) = 1
2π

〈
PSFpyr ((x, y)− (·, ·)) , ψεaper

〉
. (3.12)

Then, by linearity, the 4 independent beams ψmndet ,m, n ∈ {0, 1}, falling onto the de-
tector are given by

ψmndet (x, y) = 1
2π

〈
PSFmnpyr ((x, y)− (·, ·)) , ψεaper

〉
= 1

4

〈
(δxδy) ((x, y)− (·, ·)) , ψεaper

〉
+ (−1)m i

4π

〈
(vxδy) ((x, y)− (·, ·)) , ψεaper

〉
+ (−1)n i

4π

〈
(δxvy) ((x, y)− (·, ·)) , ψεaper

〉
+ (−1)m+n+1

4π2

〈
vxy ((x, y)− (·, ·)) , ψεaper

〉
= 1

4ψ
ε
aper (x, y) + (−1)m i

4π

〈
vx (x− ·) , ψεaper (·, y)

〉
+ (−1)n i

4π

〈
vy (y − ·) , ψεaper (x, ·)

〉
+ (−1)m+n+1

4π2

〈
vxy ((x, y)− (·, ·)) , ψεaper

〉
.

The four complex amplitudes are explicitly formulated as

ψ00
det(x, y) = 1

4ψ
ε
aper (x, y) + i

4π

〈
vx (x− ·) , ψεaper (·, y)

〉
+ i

4π

〈
vy (y − ·) , ψεaper (x, ·)

〉
− 1

4π2

〈
vxy ((x, y)− (·, ·)) , ψεaper

〉
,
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ψ01
det(x, y) = 1

4ψ
ε
aper (x, y) + i

4π

〈
vx (x− ·) , ψεaper (·, y)

〉
− i

4π

〈
vy (y − ·) , ψεaper (x, ·)

〉
+ 1

4π2

〈
vxy ((x, y)− (·, ·)) , ψεaper

〉
,

ψ10
det(x, y) = 1

4ψ
ε
aper (x, y)− i

4π

〈
vx (x− ·) , ψεaper (·, y)

〉
+ i

4π

〈
vy (y − ·) , ψεaper (x, ·)

〉
+ 1

4π2

〈
vxy ((x, y)− (·, ·)) , ψεaper

〉
,

ψ11
det(x, y) = 1

4ψ
ε
aper (x, y)− i

4π

〈
vx (x− ·) , ψεaper (·, y)

〉
− i

4π

〈
vy (y − ·) , ψεaper (x, ·)

〉
− 1

4π2

〈
vxy ((x, y)− (·, ·)) , ψεaper

〉
.

Now, the intensities on the detector are computed as

Imn (x, y) = ψmndet (x, y)ψmndet (x, y), m, n ∈ {0, 1}. (3.13)

If we abbreviate ψεaper by ψ and omit the arguments for simplicity of notation, the four
intensities are evaluated as

I00 (x, y) = ψ00
det (x, y)ψ00

det (x, y)

=
[

1
4ψ + i

4π 〈vx, ψ〉+ i

4π 〈vy, ψ〉 −
1

4π2 〈vxy, ψ〉
]

·
[

1
4ψ −

i

4π 〈vx, ψ〉 −
i

4π 〈vy, ψ〉 −
1

4π2 〈vxy, ψ〉
]

= 1
16ψψ −

i

16πψ〈vx, ψ〉 −
i

16πψ〈vy, ψ〉 −
1

16π2ψ〈vxy, ψ〉

+ i

16π 〈vx, ψ〉ψ + 1
16π2 〈vx, ψ〉〈vx, ψ〉+ 1

16π2 〈vx, ψ〉〈vy, ψ〉 −
i

16π3 〈vx, ψ〉〈vxy, ψ〉

+ i

16π 〈vy, ψ〉ψ + 1
16π2 〈vy, ψ〉〈vx, ψ〉+ 1

16π2 〈vy, ψ〉〈vy, ψ〉 −
i

16π3 〈vy, ψ〉〈vxy, ψ〉

− 1
16π2 〈vxy, ψ〉ψ + i

16π3 〈vxy, ψ〉〈vx, ψ〉+ i

16π3 〈vxy, ψ〉〈vy, ψ〉+ 1
16π4 〈vxy, ψ〉〈vxy, ψ〉,

I01 (x, y) = ψ01
det (x, y)ψ01

det (x, y)

=
[

1
4ψ + i

4π 〈vx, ψ〉 −
i

4π 〈vy, ψ〉+ 1
4π2 〈vxy, ψ〉

]
·
[

1
4ψ −

i

4π 〈vx, ψ〉+ i

4π 〈vy, ψ〉+ 1
4π2 〈vxy, ψ〉

]
= 1

16ψψ −
i

16πψ〈vx, ψ〉+ i

16πψ〈vy, ψ〉+ 1
16π2ψ〈vxy, ψ〉

+ i

16π 〈vx, ψ〉ψ + 1
16π2 〈vx, ψ〉〈vx, ψ〉 −

1
16π2 〈vx, ψ〉〈vy, ψ〉+ i

16π3 〈vx, ψ〉〈vxy, ψ〉

− i

16π 〈vy, ψ〉ψ −
1

16π2 〈vy, ψ〉〈vx, ψ〉+ 1
16π2 〈vy, ψ〉〈vy, ψ〉 −

i

16π3 〈vy, ψ〉〈vxy, ψ〉
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+ 1
16π2 〈vxy, ψ〉ψ −

i

16π3 〈vxy, ψ〉〈vx, ψ〉+ i

16π3 〈vxy, ψ〉〈vy, ψ〉+ 1
16π4 〈vxy, ψ〉〈vxy, ψ〉,

I10 (x, y) = ψ10
det (x, y)ψ10

det (x, y)

=
[

1
4ψ −

i

4π 〈vx, ψ〉+ i

4π 〈vy, ψ〉+ 1
4π2 〈vxy, ψ〉

]
·
[

1
4ψ + i

4π 〈vx, ψ〉 −
i

4π 〈vy, ψ〉+ 1
4π2 〈vxy, ψ〉

]
= 1

16ψψ + i

16πψ〈vx, ψ〉 −
i

16πψ〈vy, ψ〉+ 1
16π2ψ〈vxy, ψ〉

− i

16π 〈vx, ψ〉ψ + 1
16π2 〈vx, ψ〉〈vx, ψ〉 −

1
16π2 〈vx, ψ〉〈vy, ψ〉 −

i

16π3 〈vx, ψ〉〈vxy, ψ〉

+ i

16π 〈vy, ψ〉ψ −
1

16π2 〈vy, ψ〉〈vx, ψ〉+ 1
16π2 〈vy, ψ〉〈vy, ψ〉+ i

16π3 〈vy, ψ〉〈vxy, ψ〉

+ 1
16π2 〈vxy, ψ〉ψ + i

16π3 〈vxy, ψ〉〈vx, ψ〉 −
i

16π3 〈vxy, ψ〉〈vy, ψ〉+ 1
16π4 〈vxy, ψ〉〈vxy, ψ〉,

I11 (x, y) = ψ11
det (x, y)ψ11

det (x, y)

=
[

1
4ψ −

i

4π 〈vx, ψ〉 −
i

4π 〈vy, ψ〉 −
1

4π2 〈vxy, ψ〉
]

·
[

1
4ψ + i

4π 〈vx, ψ〉+ i

4π 〈vy, ψ〉 −
1

4π2 〈vxy, ψ〉
]

= 1
16ψψ + i

16πψ〈vx, ψ〉+ i

16πψ〈vy, ψ〉 −
1

16π2ψ〈vxy, ψ〉

− i

16π 〈vx, ψ〉ψ + 1
16π2 〈vx, ψ〉〈vx, ψ〉+ 1

16π2 〈vx, ψ〉〈vy, ψ〉+ i

16π3 〈vx, ψ〉〈vxy, ψ〉

− i

16π 〈vy, ψ〉ψ + 1
16π2 〈vy, ψ〉〈vx, ψ〉+ 1

16π2 〈vy, ψ〉〈vy, ψ〉+ i

16π3 〈vy, ψ〉〈vxy, ψ〉

− 1
16π2 〈vxy, ψ〉ψ −

i

16π3 〈vxy, ψ〉〈vx, ψ〉 −
i

16π3 〈vxy, ψ〉〈vy, ψ〉+ 1
16π4 〈vxy, ψ〉〈vxy, ψ〉.

Taking the sums according to (3.1), we obtain the non-modulated (indicated by the
superscript n) pyramid sensor data snx in x-direction as

I0 · snx(x, y) = [I01(x, y) + I00(x, y)]− [I11(x, y) + I10(x, y)]

= 1
16ψψ −

i

16πψ〈vx, ψ〉+ i

16πψ〈vy, ψ〉+ 1
16π2ψ〈vxy, ψ〉

+ i

16π 〈vx, ψ〉ψ + 1
16π2 〈vx, ψ〉〈vx, ψ〉 −

1
16π2 〈vx, ψ〉〈vy, ψ〉+ i

16π3 〈vx, ψ〉〈vxy, ψ〉

− i

16π 〈vy, ψ〉ψ −
1

16π2 〈vy, ψ〉〈vx, ψ〉+ 1
16π2 〈vy, ψ〉〈vy, ψ〉 −

i

16π3 〈vy, ψ〉〈vxy, ψ〉

+ 1
16π2 〈vxy, ψ〉ψ −

i

16π3 〈vxy, ψ〉〈vx, ψ〉+ i

16π3 〈vxy, ψ〉〈vy, ψ〉+ 1
16π4 〈vxy, ψ〉〈vxy, ψ〉

+ 1
16ψψ −

i

16πψ〈vx, ψ〉 −
i

16πψ〈vy, ψ〉 −
1

16π2ψ〈vxy, ψ〉

+ i

16π 〈vx, ψ〉ψ + 1
16π2 〈vx, ψ〉〈vx, ψ〉+ 1

16π2 〈vx, ψ〉〈vy, ψ〉 −
i

16π3 〈vx, ψ〉〈vxy, ψ〉

+ i

16π 〈vy, ψ〉ψ + 1
16π2 〈vy, ψ〉〈vx, ψ〉+ 1

16π2 〈vy, ψ〉〈vy, ψ〉 −
i

16π3 〈vy, ψ〉〈vxy, ψ〉
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− 1
16π2 〈vxy, ψ〉ψ + i

16π3 〈vxy, ψ〉〈vx, ψ〉+ i

16π3 〈vxy, ψ〉〈vy, ψ〉+ 1
16π4 〈vxy, ψ〉〈vxy, ψ〉

− 1
16ψψ −

i

16πψ〈vx, ψ〉 −
i

16πψ〈vy, ψ〉+ 1
16π2ψ〈vxy, ψ〉

+ i

16π 〈vx, ψ〉ψ −
1

16π2 〈vx, ψ〉〈vx, ψ〉 −
1

16π2 〈vx, ψ〉〈vy, ψ〉 −
i

16π3 〈vx, ψ〉〈vxy, ψ〉

+ i

16π 〈vy, ψ〉ψ −
1

16π2 〈vy, ψ〉〈vx, ψ〉 −
1

16π2 〈vy, ψ〉〈vy, ψ〉 −
i

16π3 〈vy, ψ〉〈vxy, ψ〉

+ 1
16π2 〈vxy, ψ〉ψ + i

16π3 〈vxy, ψ〉〈vx, ψ〉+ i

16π3 〈vxy, ψ〉〈vy, ψ〉 −
1

16π4 〈vxy, ψ〉〈vxy, ψ〉

− 1
16ψψ −

i

16πψ〈vx, ψ〉+ i

16πψ〈vy, ψ〉 −
1

16π2ψ〈vxy, ψ〉

+ i

16π 〈vx, ψ〉ψ −
1

16π2 〈vx, ψ〉〈vx, ψ〉+ 1
16π2 〈vx, ψ〉〈vy, ψ〉+ i

16π3 〈vx, ψ〉〈vxy, ψ〉

− i

16π 〈vy, ψ〉ψ + 1
16π2 〈vy, ψ〉〈vx, ψ〉 −

1
16π2 〈vy, ψ〉〈vy, ψ〉 −

i

16π3 〈vy, ψ〉〈vxy, ψ〉

− 1
16π2 〈vxy, ψ〉ψ −

i

16π3 〈vxy, ψ〉〈vx, ψ〉+ i

16π3 〈vxy, ψ〉〈vy, ψ〉 −
1

16π4 〈vxy, ψ〉〈vxy, ψ〉,

which simplifies to

I0 · snx(x, y) =− i

4πψ〈vx, ψ〉+ i

4π 〈vx, ψ〉ψ −
i

4π3 〈vy, ψ〉〈vxy, ψ〉+ i

4π3 〈vxy, ψ〉〈vy, ψ〉

=− i

4π
[
ψ〈vx, ψ〉 − 〈vx, ψ〉ψ

]
− i

4π3

[
〈vy, ψ〉〈vxy, ψ〉 − 〈vxy, ψ〉〈vy, ψ〉

]
=− i

4π

[
ψ (x, y)

〈
vx (x− ·) , ψ (·, y)

〉
−
〈
vx (x− ·) , ψ (·, y)

〉
ψ (x, y)

]
− i

4π3

[〈
vy (y − ·) , ψ (x, ·)

〉〈
vxy (x− ·, y − ·) , ψ

〉
−
〈
vxy (x− ·, y − ·) , ψ

〉〈
vy (y − ·) , ψ (x, ·)

〉]
.

This can further be formulated as

I0 · snx(x, y) =− i

4π ·

XΩ (x, y) · exp (−iΦ (x, y)) p.v.

∫
R

XΩ (x′, y) · exp (iΦ (x′, y)) 1
x− x′

dx′

− XΩ (x, y) · exp (iΦ (x, y)) p.v.

∫
R

XΩ (x′, y) · exp (−iΦ (x′, y)) 1
x− x′

dx′


− i

4π3

p.v.∫
R

XΩ (x, y′′) · exp (−iΦ (x, y′′)) 1
y − y′′

dy′′

· p.v.
∫
R

p.v.

∫
R

XΩ (x′, y′) · exp (iΦ (x′, y′)) 1
(x− x′) (y − y′) dy

′ dx′

− p.v.

∫
R

XΩ (x, y′′) · exp (iΦ (x, y′′)) 1
y − y′′

dy′′

· p.v.
∫
R

p.v.

∫
R

XΩ (x′, y′) · exp (−iΦ (x′, y′)) 1
(x− x′) (y − y′) dy

′ dx′
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=− i

4π

XΩ (x, y) · exp (−iΦ (x, y)) p.v.

∫
Ωy

exp (iΦ (x′, y)) 1
x− x′

dx′

− XΩ (x, y) · exp (iΦ (x, y)) p.v.

∫
Ωy

exp (−iΦ (x′, y)) 1
x− x′

dx′


− i

4π3

XΩy
(x) p.v.

∫
Ωx

exp (−iΦ (x, y′′)) 1
y − y′′

dy′′

· p.v.
∫
Ωy

p.v.

∫
Ωx

exp (iΦ (x′, y′)) 1
(x− x′) (y − y′) dy

′ dx′

− XΩy
(x) p.v.

∫
Ωx

exp (iΦ (x, y′′)) 1
y − y′′

dy′′

· p.v.
∫
Ωy

p.v.

∫
Ωx

exp (−iΦ (x′, y′)) 1
(x− x′) (y − y′) dy

′ dx′

 .
With Euler’s and trigonometric formulas we obtain

I0 · snx(x, y) = − i

4πXΩ (x, y)

2i p.v.
∫
Ωy

sin [Φ (x′, y)− Φ (x, y)]
x− x′

dx′


− i

4π3XΩy
(x)

2i p.v.
∫

Ωx

p.v.

∫
Ωy

p.v.

∫
Ωx

sin [Φ (x′, y′)− Φ (x, y′′)]
(x− x′) (y − y′) (y − y′′) dy

′ dx′ dy′′


= XΩ (x, y) 1

2π p.v.

∫
Ωy

sin [Φ (x′, y)− Φ (x, y)]
x− x′

dx′

+ XΩy
(x) 1

2π3 p.v.

∫
Ωy

p.v.

∫
Ωx

p.v.

∫
Ωx

sin [Φ (x′, y′)− Φ (x, y′′)]
(x− x′) (y − y′) (y − y′′) dy

′′ dy′ dx′.

Taking the sums according to (3.1), the non-modulated pyramid sensor data sny in
y-direction are written as
I0 · sny (x, y) = [I01(x, y) + I11(x, y)]− [I00(x, y) + I10(x, y)]

= 1
16ψψ −

i

16πψ〈vx, ψ〉+ i

16πψ〈vy, ψ〉+ 1
16π2ψ〈vxy, ψ〉

+ i

16π 〈vx, ψ〉ψ + 1
16π2 〈vx, ψ〉〈vx, ψ〉 −

1
16π2 〈vx, ψ〉〈vy, ψ〉+ i

16π3 〈vx, ψ〉〈vxy, ψ〉

− i

16π 〈vy, ψ〉ψ −
1

16π2 〈vy, ψ〉〈vx, ψ〉+ 1
16π2 〈vy, ψ〉〈vy, ψ〉 −

i

16π3 〈vy, ψ〉〈vxy, ψ〉

+ 1
16π2 〈vxy, ψ〉ψ −

i

16π3 〈vxy, ψ〉〈vx, ψ〉+ i

16π3 〈vxy, ψ〉〈vy, ψ〉+ 1
16π4 〈vxy, ψ〉〈vxy, ψ〉

+ 1
16ψψ + i

16πψ〈vx, ψ〉+ i

16πψ〈vy, ψ〉 −
1

16π2ψ〈vxy, ψ〉

− i

16π 〈vx, ψ〉ψ + 1
16π2 〈vx, ψ〉〈vx, ψ〉+ 1

16π2 〈vx, ψ〉〈vy, ψ〉+ i

16π3 〈vx, ψ〉〈vxy, ψ〉
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− i

16π 〈vy, ψ〉ψ + 1
16π2 〈vy, ψ〉〈vx, ψ〉+ 1

16π2 〈vy, ψ〉〈vy, ψ〉+ i

16π3 〈vy, ψ〉〈vxy, ψ〉

− 1
16π2 〈vxy, ψ〉ψ −

i

16π3 〈vxy, ψ〉〈vx, ψ〉 −
i

16π3 〈vxy, ψ〉〈vy, ψ〉+ 1
16π4 〈vxy, ψ〉〈vxy, ψ〉

− 1
16ψψ + i

16πψ〈vx, ψ〉+ i

16πψ〈vy, ψ〉+ 1
16π2ψ〈vxy, ψ〉

− i

16π 〈vx, ψ〉ψ −
1

16π2 〈vx, ψ〉〈vx, ψ〉 −
1

16π2 〈vx, ψ〉〈vy, ψ〉+ i

16π3 〈vx, ψ〉〈vxy, ψ〉

− i

16π 〈vy, ψ〉ψ −
1

16π2 〈vy, ψ〉〈vx, ψ〉 −
1

16π2 〈vy, ψ〉〈vy, ψ〉+ i

16π3 〈vy, ψ〉〈vxy, ψ〉

+ 1
16π2 〈vxy, ψ〉ψ −

i

16π3 〈vxy, ψ〉〈vx, ψ〉 −
i

16π3 〈vxy, ψ〉〈vy, ψ〉 −
1

16π4 〈vxy, ψ〉〈vxy, ψ〉

− 1
16ψψ −

i

16πψ〈vx, ψ〉+ i

16πψ〈vy, ψ〉 −
1

16π2ψ〈vxy, ψ〉

+ i

16π 〈vx, ψ〉ψ −
1

16π2 〈vx, ψ〉〈vx, ψ〉+ 1
16π2 〈vx, ψ〉〈vy, ψ〉+ i

16π3 〈vx, ψ〉〈vxy, ψ〉

− i

16π 〈vy, ψ〉ψ + 1
16π2 〈vy, ψ〉〈vx, ψ〉 −

1
16π2 〈vy, ψ〉〈vy, ψ〉 −

i

16π3 〈vy, ψ〉〈vxy, ψ〉

− 1
16π2 〈vxy, ψ〉ψ −

i

16π3 〈vxy, ψ〉〈vx, ψ〉+ i

16π3 〈vxy, ψ〉〈vy, ψ〉 −
1

16π4 〈vxy, ψ〉〈vxy, ψ〉,

which is equivalent to

I0 · sny (x, y) = i

4πψ〈vy, ψ〉+ i

4π3 〈vx, ψ〉〈vxy, ψ〉 −
i

4π 〈vy, ψ〉ψ −
i

4π3 〈vxy, ψ〉〈vx, ψ〉

= i

4π
[
ψ〈vy, ψ〉 − 〈vy, ψ〉ψ

]
+ i

4π3

[
〈vx, ψ〉〈vxy, ψ〉 − 〈vxy, ψ〉〈vx, ψ〉

]
= i

4π

[
ψ (x, y)

〈
vy (y − ·) , ψ (x, ·)

〉
−
〈
vy (y − ·) , ψ (x, ·)

〉
ψ (x, y)

]
+ i

4π3

[〈
vx (x− ·) , ψ (·, y)

〉〈
vxy (x− ·, y − ·) , ψ

〉
−
〈
vxy (x− ·, y − ·) , ψ

〉〈
vx (x− ·) , ψ (·, y)

〉]
and results in

I0 · sny (x, y) = i

4π

XΩ (x, y) · exp (−iΦ (x, y)) p.v.

∫
R

XΩ (x, y′) · exp (iΦ (x, y′)) 1
y − y′

dy′

− XΩ (x, y) · exp (iΦ (x, y)) p.v.

∫
R

XΩ (x, y′) · exp (−iΦ (x, y′)) 1
y − y′

dy′


+ i

4π3

p.v.∫
R

XΩ (x′′, y) · exp (−iΦ (x′′, y)) 1
x− x′′

dx′′

· p.v.
∫
R

p.v.

∫
R

XΩ (x′, y′) · exp (iΦ (x′, y′)) 1
(x− x′) (y − y′) dy

′ dx′

− p.v.

∫
R

XΩ (x′′, y) · exp (iΦ (x′′, y)) 1
x− x′′

dx′′

· p.v.
∫
R

p.v.

∫
R

XΩ (x′, y′) · exp (−iΦ (x′, y′)) 1
(x− x′) (y − y′) dy

′ dx′
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= i

4π

XΩ (x, y) · exp (−iΦ (x, y)) p.v.

∫
Ωx

exp (iΦ (x, y′)) 1
y − y′

dy′

− XΩ (x, y) · exp (iΦ (x, y)) p.v.

∫
Ωx

exp (−iΦ (x, y′)) 1
y − y′

dy′



+ i

4π3

XΩx (y) p.v.

∫
Ωy

exp (−iΦ (x′′, y)) 1
x− x′′

dx′′

· p.v.
∫
Ωy

p.v.

∫
Ωx

exp (iΦ (x′, y′)) 1
(x− x′) (y − y′) dy

′ dx′

− XΩx
(y) p.v.

∫
Ωy

exp (iΦ (x′′, y)) 1
x− x′′

dx′′

· p.v.
∫
Ωy

p.v.

∫
Ωx

exp (−iΦ (x′, y′)) 1
(x− x′) (y − y′) dy

′ dx′

 .
Using Euler’s and trigonometric formulas we get

I0 · sny (x, y) = i

4πXΩ (x, y)

2i p.v.
∫

Ωx

sin [Φ (x, y′)− Φ (x, y)]
y − y′

dy′



+ i

4π3XΩx (y)

2i p.v.
∫
Ωy

p.v.

∫
Ωy

p.v.

∫
Ωx

sin [Φ (x′, y′)− Φ (x′′, y)]
(x− x′) (y − y′) (x− x′′) dy

′ dx′ dx′′


= −XΩ (x, y) 1

2π p.v.

∫
Ωx

sin [Φ (x, y′)− Φ (x, y)]
y − y′

dy′

−XΩx
(y) 1

2π3 p.v.

∫
Ωy

p.v.

∫
Ωx

p.v.

∫
Ωy

sin [Φ (x′, y′)− Φ (x′′, y)]
(x− x′) (y − y′) (x− x′′) dx

′′ dy′ dx′.

This completes the derivation of the model for the sensor without modulation.

The kernels of the involved integral operators are strongly singular. They are defined in
the p.v. (principal value) meaning. Throughout the Thesis, p.v.

∫ ∫ ∫
is always meant

as abbreviation of p.v.
∫
p.v.

∫
p.v.

∫
in the context of the pyramid sensor operator.

Let us derive the pyramid sensor model with circular modulation. For the modulated
sensor, we use the modulation parameter αλ defined in (3.7).

The theoretical scheme of the non-modulated PWFS described above serves as a basis
for the modulated PWFS model. The only modification to be done is to include the
physical modulation of the beam into the model:
First, physical rotation of the beam of light with a steering mirror is represented in
the theoretical model by adding a time-dependent periodic tilt [28]

Φmod(x, y, t) = αλ (x sin(2πt/T ) + y cos(2πt/T )) (3.14)
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introducing the circular modulation path to the incoming screen Φ.
Clearly, by using the non-modulated model from above, one obtains for each time
step t the non-modulated measurements snx(x, y, t), sny (x, y, t) corresponding to the
tilted phase Φ(x, y) + Φmod(x, y, t).
As the second step, one has to integrate these time-dependent non-modulated pyra-
mid measurements snx(x, y, t), sny (x, y, t) over one full time period T , which gives the
measurements

[
scx, s

c
y

]
of the circularly modulated pyramid wavefront sensor as

scx(x, y) = 1
T

T/2∫
−T/2

snx(x, y, t) dt,

scy(x, y) = 1
T

T/2∫
−T/2

sny (x, y, t) dt.

(3.15)

Thus, the modulated sensor measurements are described by

scx(x, y) = 1
T

T/2∫
−T/2

1
2π XΩ(x, y)

p.v.

∫
Ωy

sin[Φ(x′, y) + Φmod(x′, y, t)− Φ(x, y)− Φmod(x, y, t)]
x− x′

dx′ dt

+ 1
T

T/2∫
−T/2

1
2π3 XΩy

(x)

p.v.

∫
Ωy

∫
Ωx

∫
Ωx

sin[Φ(x′, y′) + Φmod(x′, y′, t)− Φ(x, y′′)− Φmod(x, y′′, t)]
(x− x′)(y − y′)(y − y′′) dy′′ dy′ dx′ dt.

First, we want to separate the parts which depend on time to be able to integrate
them,

scx(x, y) = 1
T

T/2∫
−T/2

1
2π XΩ(x, y)

p.v.

∫
Ωy

sin
[
(Φ(x′, y)− Φ(x, y)) +

(
Φmod(x′, y, t)− Φmod(x, y, t)

)]
x− x′

dx′ dt

+ 1
T

T/2∫
−T/2

1
2π3 XΩy

(x)

p.v.

∫
Ωy

∫
Ωx

∫
Ωx

sin[(Φ(x′, y′)− Φ(x, y′′)) + (Φmod(x′, y′, t)− Φmod(x, y′′, t))]
(x− x′)(y − y′)(y − y′′) dy′′ dy′ dx′ dt.
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Note that the modulation function Φmod is linear in the first two arguments, i.e.,

Φmod(x′, y, t)− Φmod(x, y, t) = αλx
′ sin(2πt/T ) + αλy cos(2πt/T )

− αλx sin(2πt/T )− αλy cos(2πt/T )
= αλ(x′ − x) sin(2πt/T )
= Φmod(x′ − x, 0, t),

Φmod(x′, y′, t)− Φmod(x, y′′, t) = αλx
′ sin(2πt/T ) + αλy

′ cos(2πt/T )
− αλx sin(2πt/T )− αλy′′ cos(2πt/T )

= αλ(x′ − x) sin(2πt/T ) + αλ(y′ − y′′) cos(2πt/T )
= Φmod(x′ − x, y′ − y′′, t).

(3.16)

Hence, we have

scx(x, y) = 1
T

T/2∫
−T/2

1
2π XΩ(x, y)

p.v.

∫
Ωy

sin[(Φ(x′, y)− Φ(x, y)) + Φmod(x′ − x, 0, t)]
x− x′

dx′ dt

+ 1
T

T/2∫
−T/2

1
2π3 XΩy

(x)

p.v.

∫
Ωy

∫
Ωx

∫
Ωx

sin[(Φ(x′, y′)− Φ(x, y′′)) + Φmod(x′ − x, y′ − y′′, t)]
(x− x′)(y − y′)(y − y′′) dy′′ dy′ dx′ dt.

Using trigonometric formulas, we separate the time-dependent parts

scx(x, y) = XΩ(x, y)

 1
2π p.v.

∫
Ωy

sin[Φ(x′, y)− Φ(x, y)]
x− x′

 1
T

T/2∫
−T/2

cos
[
Φmod(x′ − x, 0, t)

]
dt

 dx′

+ 1
2π p.v.

∫
Ωy

cos[Φ(x′, y)− Φ(x, y)]
x− x′

 1
T

T/2∫
−T/2

sin
[
Φmod(x′ − x, 0, t)

]
dt

 dx′


+ XΩy

(x) 1
2π3 p.v.

∫
Ωy

∫
Ωx

∫
Ωx

[
sin[Φ(x′, y′)− Φ(x, y′′)]
(x− x′)(y − y′)(y − y′′)

·

 1
T

T/2∫
−T/2

cos
[
Φmod(x′ − x, y′ − y′′, t)

]
dt

] dy′′ dy′ dx′
+ XΩy

(x) 1
2π3 p.v.

∫
Ωy

∫
Ωx

∫
Ωx

[
cos[Φ(x′, y′)− Φ(x, y′′)]
(x− x′)(y − y′)(y − y′′)

·

 1
T

T/2∫
−T/2

sin
[
Φmod(x′ − x, y′ − y′′, t)

]
dt

] dy′′ dy′ dx′.
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The second and the fourth terms equal zero, since the integrands are odd functions.
After substitution of the explicit expressions (3.16) for Φmod, the remaining time inte-
grals simplify to

1
T

T/2∫
−T/2

cos
[
Φmod(x′ − x, y′ − y′′, t)

]
dt

= 1
T

T/2∫
−T/2

cos [αλ(x′ − x) sin(2πt/T ) + αλ(y′ − y′′) cos(2πt/T )] dt

= 1
T

T/2∫
−T/2

cos [αλ(x′ − x) sin(2πt/T )] cos [αλ(y′ − y′′) cos(2πt/T )] dt

− 1
T

T/2∫
−T/2

sin [αλ(x′ − x) sin(2πt/T )] sin [αλ(y′ − y′′) cos(2πt/T )] dt

= 1
T

T/2∫
−T/2

cos [αλ(x′ − x) sin(2πt/T )] cos [αλ(y′ − y′′) cos(2πt/T )] dt− 0.

and

1
T

T/2∫
−T/2

cos
[
Φmod(x′ − x, 0, t)

]
dt = 1

T

T/2∫
−T/2

cos [αλ(x′ − x) sin(2πt/T )] dt

= 1
2π

π∫
−π

cos [αλ(x′ − x) sin(t′)] dt′

= J0[αλ(x′ − x)],

where we used the substitution t′ = 2πt/T and the definition of the zero-order Bessel
function

J0(x) = 1
π

π∫
0

cos(x sin t) dt

= 1
2π

π∫
−π

cos(x sin t) dt.

Altogether, it results in

scx(x, y) = XΩ (x, y) 1
2π p.v.

∫
Ωy

sin [Φ (x′, y)− Φ (x, y)] J0[αλ(x′ − x)]
x− x′

dx′

+ XΩy
(x) 1

2π3 p.v.

∫
Ωy

∫
Ωx

∫
Ωx

sin [Φ (x′, y′)− Φ (x, y′′) lc (x′ − x, y′ − y′′)]
(x− x′) (y − y′) (y − y′′) dy′′ dy′ dx′.
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with

lc(x, y) := 1
T

T/2∫
−T/2

cos[αλx sin(2πt/T )] cos[αλy cos(2πt/T )] dt.

All steps can by performed for the data s{c}y analogously.

3.2.2 Mathematical derivation of phase mask model
Taking interference effects of the four subbeams falling on the detector into account by
utilizing the pyramidal phase mask Π instead of the transmission mask Tmn in (3.9)
gives the optical transfer function [30, 86, 214]

OTFpyr (ξ, η) = exp (−iΠ (ξ, η)) .

The phase mask is represented by

Π (ξ, η) := πq

p
(|ξ|+ |η|) ,

where p is the so called PSF sampling number and q the distance between the subbeam
centers on the detector given in units of the aperture diameter, i.e., the distance
between the four intensity patterns on the detector is related to the factor p/q.

In contrast to (3.10), we cannot write the PSF as a sum of four independent inverse
Fourier transforms of four separated parts of the pyramidal phase mask. This fact
makes the phase mask approach more complicated. The derivations result in a long
expression of the pyramid signal and it is difficult to use the analytical formula of
the full phase mask measurements as foundation for the development of model-based
approaches similar to some of the in Chapter 7 summarized ones. Therefore, the pyra-
mid sensor measurements corresponding to the phase mask model are in the following
written in a more general sense compared to those associated with the transmission
mask representation.

As before, the PSF is the 2d Fourier transform of the OTF

PSFpyr = F−1
2d {OTFpyr},

the complex amplitude falling onto the detector plane is given by

ψdet(x, y) = 1
2π

〈
PSFpyr ((x, y)− (·, ·)) , ψεaper

〉
,

and the intensity I (x, y) on the detector plane is calculated as

I (x, y) = ψdet (x, y)ψdet (x, y).

according to (3.4), (3.12), and (3.13).
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The pyramid measurements are then calculated as in (3.1). In order to obtain the
intensity patterns I00, I01, I10 and I11, we have to cut out the corresponding single
quadrants of the coordinate plane I.

Most simulation environments having the pyramid sensor incorporated use the phase
mask forward model such as Octopus [129, 130] or OOMAO [44].

3.3 Pyramid and roof wavefront sensor forward op-
erators (transmission mask model)

Based on the mathematical derivations in Section 3.2.1, we analyze the operators
describing the pyramid and roof wavefront sensor models. In the following Chap-
ter, P {n,c} = [P {n,c}x ,P {n,c}y ] denote the operators representing the pyramid sensor,
R{n,c,l} = [R{n,c,l}x ,R{n,c,l}y ] the operators representing the roof wavefront sensor, and
R{n,c,l},lin = [R{n,c,l},linx ,R{n,c,l},liny ] indicate the linearized roof sensor operators. The
superscripts {n, c, l} represent the regime in which the sensor is operated – no modu-
lation, circular or linear modulation applied.

Let us first consider the mathematical model of the roof wavefront sensor in more
detail.
The roof WFS (shown in Figure 2.9 right) constitutes a part of the pyramid WFS. In
the roof sensor, the pyramidal prism is replaced by two orthogonally placed two-sided
roof prisms, resulting in a decoupling of x- and y-direction. Therefore, the roof WFS
operators R{n,c} are much simpler, as it contains only (variations of) 1d Hilbert trans-
forms in one particular direction [125, 192, 212].
Due to the physical setup of the roof WFS, linear modulation induces characteristics
which are of interest especially for roof wavefront sensors. Hence, we additionally
investigate the linear modulated roof wavefront sensor model. In case of circular mod-
ulation the amplitude of modulation is assumed to be αλ, already introduced in (3.7).
For linear modulation, 2α denotes the angle of ray displacement along the desired
direction, which is equivalent to the assumed circular modulation. We substitute the
zero-order Bessel function by a sinc-term in order to describe a linear modulation in-
stead of a circular one.
For further investigations, we again do not take interference between the four beams
into account and consider the roof WFS operator R{n,c,l} on the one hand as a stan-
dalone wavefront sensor and on the other hand as an approximation to the pyramid
WFS, i.e., P {n,c} ≈ R{n,c}.
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Definition 3.4. We introduce the operators R{n,c,l}x and R{n,c,l}y by
(

R{n,c,l}x Φ
)

(x, y) := XΩ(x, y) 1
π
p.v.

∫
Ωy

sin[Φ(x′, y)− Φ(x, y)] · k{n,c,l}(x′ − x)
x′ − x

dx′, (3.17)

(
R{n,c,l}y Φ

)
(x, y) := XΩ(x, y) 1

π
p.v.

∫
Ωx

sin[Φ(x, y′)− Φ(x, y)] · k{n,c,l}(y′ − y)
y′ − y

dy′, (3.18)

where the functions k{n,c,l} of modulation are given by kn(x) := 1, kc(x) := J0(αλx),
and kl(x) := sinc(αλx).

Theorem 3.5. Using the operators defined in (3.17)-(3.18) the measurements of the
roof WFS in the transmission mask model are written as

s{n,c,l}x (x, y) = −1
2

(
R{n,c,l}x Φ

)
(x, y),

s{n,c,l}y (x, y) = 1
2

(
R{n,c,l}y Φ

)
(x, y).

Proof. See [28, 191, 212].

The operators P {n,c}x and P {n,c}y as well as R{n,c,l}x and R{n,c,l}y are constructed in the
same way, one only has to interchange the roles of x and y in the model. In the
following, we will concentrate on the operators P {n,c}x and R{n,c,l}x since the obtained
results can easily be transferred to the operators P {n,c}y and R{n,c,l}y as well. Let us
now analyze the pyramid and roof sensor operators in more detail.

Proposition 3.6. The non-linear operators R{n,c,l} : H11/6 (R2) → L2 (R2), rep-
resenting roof wavefront sensors, are well-defined operators between the above given
spaces.

Proof. From the proof of Theorem 3.3 it follows that the pyramid and further the
roof operators are well-defined for any wavefront Φ ∈ H11/6 (R2). It remains to show(
R{n,c,l}Φ

)
∈ L2 (R2). The proof uses the boundedness(1) |sin (Φ)| ≤ |Φ| and the

Hölder continuity(2) with α = 5/6 and Hölder constant C > 0 in one direction of any
function Φ ∈ H11/6 (R2) (cf Sobolev embedding theorem, e.g., [1, Theorem 5.4]). We
start with showing that for D

(
R{n,c,l}

)
⊆ H11/6 (R2) the integrand of (3.17) in fact is

integrable. Together with
∣∣∣k{n,c,l}∣∣∣ ≤ 1, this infers from

∫
Ωy

∣∣∣∣∣sin[Φ(x′, y)− Φ(x, y)] · k{n,c,l}(x′ − x)
x′ − x

∣∣∣∣∣ dx′ (1)
≤
∫

Ωy

|Φ(x′, y)− Φ(x, y)|
|x′ − x|

dx′

(2)
≤ C

∫
Ωy

|x′ − x|5/6

|x′ − x|
dx′ = C

∫
Ωy

1
|x′ − x|1/6

dx′

= 6C
5
(
(by − x)5/6 + (x+ ay)5/6

)
< ∞
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for x ∈ Ωy, Ωy = [ay, by] ⊆ [−D/2, D/2]. As the proper integral exists, the Cauchy
principal value exists as well. For D

(
R{n,c,l}

)
⊆ H11/6 (R2), it follows that the p.v.

meaning is negligible in (3.17)-(3.18). By usage of the Cauchy-Schwarz inequality(3),
we obtain that the L2-norm∣∣∣∣∣∣R{n,c,l}x Φ

∣∣∣∣∣∣2
L2(R2)

=
∫
R2

∣∣∣R{n,c,l}x Φ (x, y)
∣∣∣2 d (x, y)

=
∫
R2

∣∣∣∣∣∣∣XΩ(x, y) 1
π

∫
Ωy

sin[Φ(x′, y)− Φ(x, y)] · k{n,c,l}(x′ − x)
x′ − x

dx′

∣∣∣∣∣∣∣
2

d (x, y)

(3)
≤ 1
π2

∫
Ω

 ∫
Ωy

∣∣∣∣ sin[Φ(x′, y)− Φ(x, y)] · k{n,c,l}(x′ − x)
x′ − x

∣∣∣∣2 dx′ · ∫
Ωy

1 dx′

 d (x, y)

≤ |Ωy|
π2

∫
Ω

∫
Ωy

(
|sin[Φ(x′, y)− Φ(x, y)]|

|x′ − x|

)2
dx′ d (x, y)

(1)
≤ |Ωy|

π2

∫
Ω

∫
Ωy

(
|Φ(x′, y)− Φ(x, y)|

|x′ − x|

)2
dx′ d (x, y)

(2)
≤ C2 |Ωy|

π2

∫
Ω

∫
Ωy

(
|x′ − x|5/6

|x′ − x|

)2

dx′ d (x, y)

= C2 |Ωy|
π2

∫
Ω

∫
Ωy

1
|x′ − x|1/3

dx′ d (x, y)

≤ sup
x∈Ωy

|M (x)| C
2 |Ω| |Ωy|
π2 < ∞

is finite as for Ωy ⊆ [−D/2, D/2] holds

M(x, y) : =
∫

Ωy

1
|x′ − x|1/3

dx′ ≤
D/2∫
−D/2

1
|x′ − x|1/3

dx′

= 3
2

[(
D

2 − x
)2/3

+
(
x+ D

2

)2/3]
=: M(x)

(3.19)

and further
sup
x∈Ωy
|M (x)| <∞. (3.20)

From the considerations in the above proof it follows the following statement:

Remark 3.7. If Φ ∈ H11/6 (R2), the principal value integrals of the operators (3.17)-
(3.18) describing the roof wavefront sensor model coincide with the standard definition
of Lebesgue integrals.
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Proposition 3.8. The non-linear operators P {n,c} : H11/6 (R2) → L2 (R2), repre-
senting pyramid wavefront sensors, are well-defined operators between the above given
spaces.

Proof. As already shown in the proof of Theorem 3.3, the pyramid sensor operators
are non-linear, well-defined operators for any wavefront Φ ∈ H11/6 (R2).
In order to verify that

(
P {n,c}Φ

)
∈ L2 we split the corresponding operators into two

parts: (
P {n,c}x Φ

)
(x, y) =

(
R{n,c}x Φ

)
(x, y) +

(
S{n,c}x Φ

)
(x, y)

with the roof sensor operators R{n,c}x defined in (3.17) and the second term

(
S
{n,c}
x Φ

)
(x, y) :=

1
π3 XΩy (x) p.v.

∫
Ωy

∫
Ωx

∫
Ωx

sin [Φ(x′, y′)− Φ(x, y′′)] · l{n,c}(x′ − x, y′′ − y′)
(x′ − x)(y′ − y)(y′′ − y)

dy′′ dy′ dx′.

With Proposition 3.6 and∣∣∣∣∣∣P {n,c}x Φ
∣∣∣∣∣∣
L2(R2)

≤
∣∣∣∣∣∣R{n,c}x Φ

∣∣∣∣∣∣
L2(R2)

+
∣∣∣∣∣∣S{n,c}x Φ

∣∣∣∣∣∣
L2(R2)

,

it remains to show
∣∣∣∣∣∣S{n,c}x Φ

∣∣∣∣∣∣
L2(R2)

<∞.

First, we focus on the non-modulated sensor and consider the operator Sn
x.

The proof uses the Lp-boundedness of the classical Hilbert transform for 1 < p < ∞
as found in, e.g., [29]. For our purposes, we define the Hilbert transforms Hx in x-
direction and Hy in y-direction according to (3.11) by

HxΦ(x, y) := 1
π
p.v.

∫ ∞
−∞

Φ(x′, y)
x′ − x

dx′,

HyΦ(x, y) := 1
π
p.v.

∫ ∞
−∞

Φ(x, y′)
y′ − y

dy′.

(3.21)

Theorem 3.9 (Theorem 8.1.12, [29]). For Φ ∈ Lp (R2), 1 < p < ∞, the Hilbert
transform defined in (3.21) exists almost everywhere, belongs to Lp (R2) and satisfies

||HxΦ||Lp ≤ cp ||Φ||Lp and ||HyΦ||Lp ≤ dp ||Φ||Lp (3.22)

with constants cp, dp > 0. (3.22) is often referred to as the Marcel Riesz inequality for
Hilbert transforms.

The 2d Hilbert transform Hxy : Lp (R2) → Lp (R2) for 1 < p < ∞ is considered as
the composition Hxy = Hx ◦Hy.
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Using trigonometric formulas, we rewrite Sn
x into

(SnxΦ) (x, y) =
1
π3 XΩy (x) p.v.

∫
Ωy

∫
Ωx

∫
Ωx

sin [Φ(x′, y′)− Φ(x, y′′)]
(x′ − x)(y′ − y)(y′′ − y)

dy′′ dy′ dx′

=
1
π3 XΩy (x) p.v.

∫
Ωy

∫
Ωx

∫
Ωx

sin [Φ(x′, y′)] cos [Φ(x, y′′)]− cos [Φ(x′, y′)] sin [Φ(x, y′′)]
(x′ − x)(y′ − y)(y′′ − y)

dy′′ dy′ dx′

=
1
π3 XΩy (x)

[
(Hxy (XΩ · sin Φ)) (x, y) · (Hy (XΩx · cos Φ)) (x, y)

− (Hxy (XΩ · cos Φ)) (x, y) · (Hy (XΩx · sin Φ)) (x, y)
]

and obtain for 2 ≤ p <∞

π3 ||Sn
xΦ||Lp/2 = ||(Hxy (sin Φ)) · (Hy (cos Φ))− (Hxy (cos Φ)) · (Hy (sin Φ))||Lp/2

≤ ||(Hxy (sin Φ)) · (Hy (cos Φ))||Lp/2 + ||(Hxy (cos Φ)) · (Hy (sin Φ))||Lp/2
≤ ||(Hxy (sin Φ))||Lp ||(Hy (cos Φ))||Lp + ||(Hxy (cos Φ))||Lp ||(Hy (sin Φ))||Lp
<∞

by using the generalized Hölder inequality. Note that we omitted the multiplication
with the characteristic functions due to simplicity of notation.
It follows that

(P nΦ) ∈ Lp
(
R

2
)

for 1 ≤ p <∞ and Φ ∈ H11/6 (R2).

In order to prove (P cΦ) ∈ L2 we use relation (3.15) between non-modulated and
modulated pyramid data, i.e.,

scx(x, y) = 1
T

T/2∫
−T/2

snx(x, y, t) dt. (3.23)

Let T denote one full time period and t ∈ [−T/2, T/2]. For deriving the time-
dependent non-modulated pyramid sensor data, we introduce an operator Mmod

t given
by (

Mmod
t Φ

)
(x, y) := Φ (x, y) + Φmod (x, y, t)

for the periodic tilt Φmod inducing modulation. As in (3.14), this tilt is represented by

Φmod(x, y, t) = αλ(x sin(2πt/T ) + y cos(2πt/T )).

Due to the structure of Φmod and its compact support on the telescope pupil, it holds
that

Φmod (·, ·, t) ∈ H11/6
(
R

2
)

∀t ∈ [−T/2, T/2] .

This gives a continuous map Mmod
t : H11/6 (R2)→ H11/6 (R2) and further(

P nMmod
t Φ

)
∈ Lp

(
R

2
)

∀t ∈ [−T/2, T/2] , 1 ≤ p <∞. (3.24)
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Using the generalized Minkowski’s integral inequality(1) (cf, e.g., [98, Theorem 202],
[200], Appendix A.2), the equality snx (·, ·, t) =

(
P nMmod

t Φ
)
, and (3.23) we obtain

||scx||Lp =
 ∫
R2

|scx (x, y)|p d (x, y)
1/p

=

 ∫
R2

∣∣∣∣∣∣∣
1
T

T/2∫
−T/2

(
P nMmod

t Φ
)

(x, y) dt

∣∣∣∣∣∣∣
p

d (x, y)


1/p

(1)
≤ 1
T

T/2∫
−T/2

 ∫
R2

∣∣∣(P nMmod
t Φ

)
(x, y)

∣∣∣p d (x, y)
1/p

dt

= 1
T

T/2∫
−T/2

∣∣∣∣∣∣P nMmod
t Φ

∣∣∣∣∣∣
Lp

dt
(3.24)
< ∞,

which shows (P cΦ) ∈ Lp (R2) , 1 ≤ p < ∞ for the modulated pyramid sensor opera-
tors. Note that we omitted the factor

(
−1

2

)
in (3.8) for the above considerations.

Merely the light which is captured on the telescope pupil Ω influences the pyramid
sensor response. We consider only the light falling on the aperture (XΩ · Φ) but use the
notation Φ ∈ H11/6 (R2) for both considered variants of wavefronts with and without
compact support on the telescope pupil.
Alternatively, one can also define the pyramid sensor operators only on the telescope
aperture as P {n,c}x : H11/6 (Ω)→ L2 (Ω) and P {n,c}y ,R{n,c,l}x ,R{n,c,l}y respectively. How-
ever, since we apply, e.g., Plancherel’s theorem, we define the operators on the whole
R

2 but keep in mind that one can always restrict to the region of the telescope aper-
ture and CCD-detector. More precisely, the pyramid sensor operators are applied to
functions with compact support on the pupil Ω and map to functions with compact
support on the detector Ω (cf Section 3.2).

3.4 Linearization of the roof sensor operators
Linear approximations of WFS operators around the zero phase are sufficient in closed
loop AO in which the wavefront sensor measures already corrected and very small
incoming wavefronts. The linearization of the operators can be obtained by different
ways, e.g., by replacing

sin[Φ(x′, y)− Φ(x, y)] ≈ Φ(x′, y)− Φ(x, y)

which is valid for
|Φ(x′, y)− Φ(x, y)| << 1.
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Linearizations R{n,c,l},lin based on these approximations were already considered in [28,
125, 198, 212]. We concentrate on linear approximations for the roof wavefront sensor
operators by means of the Fréchet derivative. For this purpose, we calculate the
Gâteaux derivatives. Then, we show that the Gâteaux derivatives coincide with the
Fréchet derivatives and finally, we evaluate the corresponding linearizations.

Theorem 3.10. The Gâteaux derivatives
(
R{n,c,l}x

)′
(Φ) ∈ L

(
H11/6,L2

)
of the non-

linear roof sensor operators R{n,c,l}x : D
(
R{n,c,l}x

)
⊆ H11/6 (R2) → L2 (R2) defined

in (3.17) at Φ ∈ D
(
R{n,c,l}x

)
are given by

((
R
{n,c,l}
x

)′
(Φ) ψ

)
(x, y) = XΩ (x, y)

1
π

∫
Ωy

cos [Φ(x′, y)− Φ(x, y)] [ψ(x′, y)− ψ(x, y)] · k{n,c,l} (x′ − x)
(x′ − x)

dx′ (3.25)

and
(
R{n,c,l}y

)′
(Φ) ∈ L

(
H11/6,L2

)
respectively.

Proof. We utilize the representation (cf Taylor’s theorem with Lagrange form of the
remainder)

sin (Φ + ψ) = sin (Φ) + sin′ (Φ)ψ + 1
2 sin′′ (Φ + θψ)ψ2 (3.26)

for a θ = θ (Φ, ψ) ∈ (0, 1). For simplicity of notation, we omit the multiplication
with the characteristic function of the aperture in front of every integral and the
multiplication with the modulation kernels k{n,c,l} as these functions are independent
of the phase Φ anyway.
The Gâteaux derivatives

(
R{n,c,l}x

)′
(Φ) are computed as

((
R{n,c,l}x

)′
(Φ) ψ

)
(x, y) 3.2611= lim

t→0

(
R{n,c,l}x (Φ + tψ)

)
(x, y)−

(
R{n,c,l}x Φ

)
(x, y)

t

3.2611= lim
t→0

1
π

∫
Ωy

(sin [Φ(x′, y) + tψ(x′, y)− Φ(x, y)− tψ(x, y)]
t(x′ − x)

−sin [Φ(x′, y)− Φ(x, y)]
t (x′ − x)

)
dx′

(3.26)= lim
t→0

1
π

∫
Ωy

(sin′ [Φ(x′, y)− Φ(x, y)] [tψ(x′, y)− tψ(x, y)]
t(x′ − x)

+
1
2 sin′′ [Φ(x′, y)− Φ(x, y) + θt [ψ(x′, y)− ψ(x, y)]]

t(x′ − x)

· t2
[
ψ(x′, y)− ψ(x, y)

]2 )
dx′

3.2611= 1
π

∫
Ωy

cos [Φ(x′, y)− Φ(x, y)] [ψ(x′, y)− ψ(x, y)]
(x′ − x) dx′.
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Obviously, the Gâteaux derivatives are linear in ψ.
For any Φ ∈ H11/6 (R2) we deduce that the Gâteaux derivatives are bounded and
further continuous in the direction ψ, i.e.,

(
R{n,c,l}x

)′
(Φ) ∈ L

(
H11/6,L2

)
, by showing

∣∣∣∣∣∣∣∣(R{n,c,l}x

)′
(Φ)

∣∣∣∣∣∣∣∣
L(H11/6,L2)

= sup
||ψ||H11/6=1

∣∣∣∣∣∣∣∣ ((R{n,c,l}x

)′
(Φ) ψ

)
︸ ︷︷ ︸

=:U1

∣∣∣∣∣∣∣∣
L2(R2)

<∞.

By application of the Cauchy-Schwarz inequality(1),
∣∣∣k{n,c,l}∣∣∣ ≤ 1, as well as the Hölder

continuity(2) with α = 5/6 and Hölder constant C > 0 of any function in H11/6 (R2),
the statement results from

||U1||2L2(R2) =
∫
R2

∣∣∣∣((R{n,c,l}x

)′
(Φ) ψ

)
(x, y)

∣∣∣∣2 d (x, y)

=
∫
Ω

∣∣∣∣∣∣∣
1
π

∫
Ωy

cos [Φ (x′, y)− Φ (x, y)] [ψ (x′, y)− ψ (x, y)] · k{n,c,l} (x′ − x)
x′ − x

dx′

∣∣∣∣∣∣∣
2

d (x, y)

(1)
≤ 1
π2

∫
Ω

 ∫
Ωy

∣∣∣cos [Φ (x′, y)− Φ (x, y)] · k{n,c,l} (x′ − x)
∣∣∣2 dx′


·

 ∫
Ωy

∣∣∣∣ψ (x′, y)− ψ (x, y)
x′ − x

∣∣∣∣2 dx′

 d (x, y)

(2)
≤ 1
π2

∫
Ω

 ∫
Ωy

1 dx′

 ·
C2

∫
Ωy

(
|x′ − x|5/6

|x′ − x|

)2

dx′

 d (x, y)

= C2 |Ωy|
π2

∫
Ω

∫
Ωy

1
|x′ − x|1/3

dx′ d (x, y)
(3.19)−(3.20)

< ∞.

Theorem 3.11. The Gâteaux derivatives (3.25) coincide with the Fréchet derivatives.

Proof. For the proof we use the following assertion found in, e.g., [9, 223].
Proposition 3.12 (Theorem III.5.4, [223]; p.10, [9]). If the Gâteaux derivatives(
R{n,c,l}x

)′
(Φ) exist for all Φ from a neighborhood of Φ0 ∈ D

(
R{n,c,l}x

)
and the map-

pings Φ→
(
R{n,c,l}x

)′
(Φ) are continuous from H11/6 (R2) into L

(
H11/6,L2

)
at Φ = Φ0,

then the operators R{n,c,l}x are Fréchet differentiable at Φ0.

Hence, it suffices to show that for any Φ1,Φ2 ∈ H11/6 (R2) holds∣∣∣∣∣∣∣∣ (R{n,c,l}x

)′
(Φ1)−

(
R{n,c,l}x

)′
(Φ2)

∣∣∣∣∣∣∣∣2
L(H11/6,L2)

≤ C̃ ||Φ1 − Φ2||2H11/6 ,
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i.e.,

sup
||ψ||H11/6=1

∣∣∣∣∣∣∣∣ ((R{n,c,l}x

)′
(Φ1) ψ

)
−
((

R{n,c,l}x

)′
(Φ2) ψ

)
︸ ︷︷ ︸

:=U2

∣∣∣∣∣∣∣∣2
L2

≤ C̃ ||Φ1 − Φ2||2H11/6

with C̃ <∞.
Under the Lipschitz continuity(3) of the cosine function with the Lipschitz constant
L > 0 we obtain

||U2||2L2

3.2611=
∫
R2

∣∣∣∣((R{n,c,l}x

)′
(Φ1) ψ

)
(x, y)−

((
R{n,c,l}x

)′
(Φ2) ψ

)
(x, y)

∣∣∣∣2 d (x, y)

3.2611=
∫
Ω

∣∣∣∣∣∣∣
1
π

∫
Ωy

[
cos

[
Φ1
(
x′, y

)
− Φ1 (x, y)

]
− cos

[
Φ2
(
x′, y

)
− Φ2 (x, y)

] ]

· [ψ (x′, y)− ψ (x, y)] · k{n,c,l} (x′ − x)
x′ − x

dx′
∣∣∣∣∣
2

d (x, y)

3i(1)31
≤ 1

π2

∫
Ω

 ∫
Ωy

∣∣∣ cos
[
Φ1
(
x′, y

)
− Φ1 (x, y)

]
− cos

[
Φ2
(
x′, y

)
− Φ2 (x, y)

] ∣∣∣2dx′


·

 ∫
Ωy

∣∣∣∣∣ [ψ (x′, y)− ψ (x, y)] · k{n,c,l} (x′ − x)
x′ − x

∣∣∣∣∣
2

dx′

 d (x, y)

(2),(3)
≤ L2C2

π2

∫
Ω

 ∫
Ωy

∣∣Φ1
(
x′, y

)
− Φ1 (x, y)− Φ2

(
x′, y

)
+ Φ2 (x, y)

∣∣2 dx′


·

 ∫
Ωy

(
|x′ − x|5/6

|x′ − x|

)2

dx′

 d (x, y)

3.2611= L2C2

π2

∫
Ω

 ∫
Ωy

∣∣[Φ1
(
x′, y

)
− Φ2

(
x′, y

)]
− [Φ1 (x, y)− Φ2 (x, y)]

∣∣2 dx′


·

 ∫
Ωy

1
|x′ − x|1/3

dx′

 d (x, y)

(3.19)
≤ 2L2C2

π2

∫
Ω

 ∫
Ωy

∣∣Φ1
(
x′, y

)
− Φ2

(
x′, y

)∣∣2 + |Φ1 (x, y)− Φ2 (x, y)|2 dx′


·M(x, y) d (x, y)
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3.2611
≤ sup

x∈Ωy
|M(x)| 2L

2C2

π2

 ∫
Ωy

∫
Ωx

∫
Ωy

∣∣Φ1
(
x′, y

)
− Φ2

(
x′, y

)∣∣2 dx′ dy dx
+
∫

Ωy

∫
Ωx

∫
Ωy

|Φ1 (x, y)− Φ2 (x, y)|2 dx dy dx′


3.2611= sup
x∈Ωy

|M(x)| 2L
2C2 |Ωy|
π2

(
||Φ1 − Φ2||2L2

+ ||Φ1 − Φ2||2L2

)
3.2611= sup

x∈Ωy
|M(x)| 4L

2C2 |Ωy|
π2 ||Φ1 − Φ2||2L2

3.2611
≤ sup

x∈Ωy
|M(x)| 4L

2C2 |Ωy|
π2 ||Φ1 − Φ2||2H11/6

(3.20)
≤ C̃ ||Φ1 − Φ2||2H11/6 ,

i.e., the mapping Φ →
(
R{n,c,l}x

)′
(Φ) is continuous. Thus, the operators R{n,c,l}x rep-

resenting the roof sensor are Fréchet differentiable.

Theorem 3.13. The linearizations R{n,c,l},lin : H11/6 (R2)→ L2 (R2) by means of the
Fréchet derivative of the operators R{n,c,l} introduced in (3.17)-(3.18) are given by(

R{n,c,l},linx Φ
)

(x, y) : =
((

R{n,c,l}x

)′
(0) Φ

)
(x, y)

= XΩ(x, y) 1
π

∫
Ωy

[Φ(x′, y)− Φ(x, y)] · k{n,c,l}(x′ − x)
x′ − x

dx′
(3.27)

for x-direction and R{n,c,l},liny accordingly.

Proof. The claim immediately follows from
(
R{n,c,l},linx Φ

)
:=

((
R{n,c,l}x

)′
(0) Φ

)
, i.e.,

considering the Fréchet derivatives (3.25) at Φ = 0 and in direction Φ.

Simplified linearized operators L{n,c,l}x

Variations of the finite Hilbert transform operator allow to simplify the linear approx-
imations of the roof sensor model. Let us, thus, consider the following operators.

Definition 3.14. We define the integral operators L{n,c,l} =
[
L{n,c,l}x ,L{n,c,l}y

]
by

(L{n,c,l}x Φ)(x, y) := 1
π
p.v.

∫
Ωy

Φ(x′, y)k{n,c,l} (x′ − x)
x′ − x

dx′ (3.28)

and L{n,c,l}y accordingly.

As derived in [75, 200], L{n,c,l} are bounded operators on Lp (R2) for 1 < p < ∞
due to the structure of the functions k{n,c,l} introducing modulation. According to the
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pyramid and roof sensor model, we consider the operators L{n,c,l} from H11/6 (R2) into
L2 (R2). In case of no modulation the operator Ln

x coincides with the finite Hilbert
transform – a singular Cauchy integral operator.
Using the above defined operators, the linearized roof sensor measurements read as

s{n,c,l},linx (x, y) = −1
2

(
R{n,c,l},linx Φ

)
(x, y)

= −1
2XΩ(x, y)

[(
L{n,c,l}x Φ

)
(x, y)− Φ(x, y) ·

(
L{n,c,l}x 1

)
(x, y)

]
.

(3.29)

Equation (3.29) provides two possibilities for wavefront reconstruction. As it is shown
in [192, 193], when an AO system enters the closed loop, the first term in the forward
model gains in importance and an assumption of neglecting the second term in the
reconstruction procedure is justifiable. Therefore, one could either use the full lin-
earized roof sensor model or ignore the second term

(
L{n,c,l}x 1

)
as it is done in several

existing algorithms for pyramid wavefront sensor, e.g., the Preprocessed Cumulative
Reconstructor with Domain decomposition (P-CuReD) [111, 195, 198], the Pyramid
Fourier Transform Reconstructor [111, 194, 196], the Finite Hilbert Transform Recon-
structor [111, 191], or the Singular Value Type Reconstructor [107, 111].

3.5 Adjoints of the linearized forward operators
Several iterative algorithms for solving Inverse Problems (e.g., the conjugate gradient
method for the normal equation, Landweber iteration or steepest descent method)
include the application of adjoint operators. In order to make these approaches suitable
for wavefront reconstruction, we derive the adjoints of the underlying operators.
First, we will evaluate the Fourier transforms of the one-term assumptions L{n,c,l} de-
fined in (3.28) and afterwards use Plancherel’s theorem to calculate the corresponding
adjoints.
The underlying operators L{n,c,l} are defined from H11/6 (R2) into L2 (R2). In order
to calculate the corresponding adjoint operators from L2 (R2) into H11/6 (R2), we
introduce the embedding operator

is : H11/6 → L2 (3.30)

and derive the adjoints according to [169] as, e.g.,
(
L{n,c,l},linx

)∗
: L2 → H11/6 with

(
L{n,c,l},linx

)∗
= i∗s

(
L̃
{n,c,l},lin
x

)∗

for
(

L̃
{n,c,l},lin
x

)∗
: L2 → L2. For simplicity, we use the notation

(
L{n,c,l},linx

)∗
instead

of
(

L̃
{n,c,l},lin
x

)∗
and omit the multiplication with the aperture mask in the following.

The adjoints of the roof sensor operators are considered accordingly.
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Proposition 3.15. The 1d Fourier transforms in x-direction of the operators L{n,c,l}x

defined in (3.28) are given by

(
L{n,c,l}x Φ

)̂
(ξ, y) = c{n,c,l} (ξ) · Φ̂ (ξ, y) (3.31)

with

cn (ξ) = i sgn (ξ) (3.32)

for the non-modulated sensor,

cc (ξ) = i

sgn (ξ) , for |ξ| > α
λ
,

2
π

arcsin
(
ξ λ
α

)
, for |ξ| ≤ α

λ

(3.33)

for the circularly modulated sensor, and

cl (ξ) = i

sgn (ξ) , for |ξ| > α
λ
,

ξ λ
α
, for |ξ| ≤ α

λ

(3.34)

for the linearly modulated sensor. The Fourier transforms of L{n,c,l}y are represented
accordingly.

Proof. Note that similar considerations are contained in [198, 212]. Since we examine
the 1d Hilbert transform L2 (R)→ L2 (R) we fix y ∈ Ωx and investigate the operators
L{n,c,l}x : H11/6 (R) ⊆ L2 (R)→ L2 (R) defined according to (3.28) without indicating
the fixed y specifically. The operators L{n,c,l}y : H11/6 (R) ⊆ L2 (R) → L2 (R) are
analyzed for fixed x ∈ Ωy respectively. We introduce the even kernel functions v{n,c,l}
by

v{n,c,l}(x) := p.v.
k{n,c,l}(x)

x

and obtain
(
L{n,c,l}x Φ

)
(x, y) = − 1

π

(
Φ (·, y) ∗ v{n,c,l}

)
(x)

= − 1
π

∞∫
−∞

Φ (x′, y) v{n,c,l} (x− x′) dx′

= lim
δ→0+

1
π

 x−δ∫
−∞

Φ (x′, y) k{n,c,l} (x′ − x)
x′ − x

dx′

+
∞∫

x+δ

Φ (x′, y) k{n,c,l} (x′ − x)
x′ − x

dx′

 .

(3.35)
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By the convolution theorem (A.1), the 1d convolution in (3.35) is a multiplication in
the Fourier domain, i.e.,

(
L{n,c,l}x Φ

)̂
(ξ, y) = −

√
2
π

Φ̂ (ξ, y) · v̂{n,c,l} (ξ) . (3.36)

As already used in [198, 212], the Fourier transforms of the kernel functions are cal-
culated as

v̂n (ξ) = −i
√

π
2 sgn (ξ)

for the non-modulated sensor,

v̂c (ξ) = −i

√

π
2 sgn (ξ) , for |ξ| > α

λ
,√

2
π

arcsin
(
ξ λ
α

)
, for |ξ| ≤ α

λ

for the circularly modulated sensor, and

v̂l (ξ) = −i

√

π
2 sgn (ξ) , for |ξ| > α

λ
,√

π
2 ξ

λ
α
, for |ξ| ≤ α

λ

for the linearly modulated sensor.
The claim of the Proposition follows by (3.36) and c{n,c,l} = −

√
2
π
v̂{n,c,l}.

Note that by the isometry of the Fourier transform we obtain∣∣∣∣∣∣L{n,c,l}x Φ (·, y)
∣∣∣∣∣∣
L2

=
∣∣∣∣∣∣∣∣(L{n,c,l}x Φ

)̂
(·, y)

∣∣∣∣∣∣∣∣
L2

=
∣∣∣∣∣∣c{n,c,l} · Φ̂ (·, y)

∣∣∣∣∣∣
L2

= c̃
∣∣∣∣∣∣Φ̂ (·, y)

∣∣∣∣∣∣
L2
,

i.e., ∣∣∣∣∣∣L{n,c,l}x Φ (·, y)
∣∣∣∣∣∣
L2

= c̃ ||Φ (·, y)||L2

for a constant 0 < c̃ <∞.

Adjoint operators
(
L{n,c,l}x

)∗
in L2 (R2)

As previously mentioned, it is sufficient to derive the adjoints as operators from L2
into itself and use the embedding operator (3.30) in order to obtain adjoint operators
from L2 into H11/6 [169].

Proposition 3.16. The adjoints
(
L{n,c,l}x

)∗
: L2 (R2) → L2 (R2) of the operators

L{n,c,l}x defined in (3.28) are given by

((
L{n,c,l}x

)∗
Ψ
)

(x, y) = − 1
π
p.v.

∫
Ωy

Ψ(x′, y) · k{n,c,l}(x′ − x)
x′ − x

dx′,

and
(
L{n,c,l}y

)∗
accordingly, i.e., L{n,c,l} are skew-adjoint in L2 (R2).
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Proof. The proof is performed in the Fourier domain in which we have to consider the
L2 (C)-inner product due to c{n,c,l} ∈ C defined in (3.32)-(3.34). We use Plancherel’s
theorem and the equality c{n,c,l} = −c{n,c,l} for the complex conjugate(1).
For any Φ,Ψ ∈ L2 (R2) with support on Ω and y ∈ Ωx holds

〈(
L{n,c,l}x Φ

)
(·, y) ,Ψ (·, y)

〉
L2(C)

3.2611=
〈(

L{n,c,l}x Φ
)̂

(·, y) , Ψ̂ (·, y)
〉
L2(C)

3.2611=
∫
R

(
L{n,c,l}x Φ

)̂
(ξ, y)Ψ̂(ξ, y) dξ

(3.31)=
∫
R

(
c{n,c,l} (ξ) · Φ̂(ξ, y)

)
Ψ̂(ξ, y) dξ

3.(1)1.= −
∫
R

Φ̂(ξ, y)
(
c{n,c,l} (ξ) · Ψ̂(ξ, y)

)
dξ

3.2611=
〈

Φ̂ (·, y) ,
((

L{n,c,l}x

)∗
Ψ
)̂

(·, y)
〉
L2(C)

3.2611=
〈

Φ (·, y) ,
((

L{n,c,l}x

)∗
Ψ
)

(·, y)
〉
L2(C)

with
((

L{n,c,l}x

)∗
Ψ
)̂

(ξ, y) = −c{n,c,l} (ξ) Ψ̂ (ξ, y), i.e.,
(
L{n,c,l}x

)∗
= −L{n,c,l}x .

Adjoint operators
(
R{n,c,l},linx

)∗
in L2 (R2)

Let us now derive the adjoints of the operators representing the linearized roof wave-
front sensor.

Proposition 3.17. The adjoints
(
R{n,c,l},linx

)∗
: L2 (R2) → L2 (R2) of the linearized

roof sensor operators R{n,c,l},linx defined in (3.27) are given by

((
R{n,c,l},linx

)∗
Ψ
)

(x, y) =
((

L{n,c,l}x

)∗
Ψ
)

(x, y)−Ψ(x, y)
(
L{n,c,l}x 1

)
(x, y)

= − 1
π
p.v.

∫
Ωy

[Ψ(x′, y) + Ψ(x, y)] · k{n,c,l}(x′ − x)
x′ − x

dx′

and
(
R{n,c,l},liny

)∗
respectively.

Proof. We choose any Φ,Ψ ∈ L2 (R2) with support on the telescope pupil Ω. Due to
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the linearity of the inner product and with representation (3.29), it holds that
〈(

R{n,c,l},linx Φ
)
,Ψ
〉

=
〈
XΩ

(
L{n,c,l}x Φ− ΦL{n,c,l}x 1

)
,Ψ
〉

=
〈

L{n,c,l}x Φ,Ψ
〉
−
〈

ΦL{n,c,l}x 1,Ψ
〉

=
〈

Φ,
(
L{n,c,l}x

)∗
Ψ
〉
−
〈

Φ,ΨL{n,c,l}x 1
〉

=
〈

Φ,
(
L{n,c,l}x

)∗
Ψ−ΨL{n,c,l}x 1

〉
=
〈

Φ,
((

R{n,c,l},linx

)∗
Ψ
)〉

,

where we consider the inner product with respect to L2 (R2) or L2 (Ω) respectively.

3.6 The discrete pyramid wavefront sensor
The full continuous measurements sx(x, y) and sy(x, y) of the pyramid wavefront sen-
sor are not available in practice. For the description of the discrete pyramid sensor
we perform a division of the continuous two dimensional process into finitely many
equispaced regions called subapertures. The data are then assumed to be averaged
over every subaperture which corresponds to the finite sampling of the pyramid sen-
sor. Note that in reality, the subaperture grid is predefined by the sensor’s physics.
Following the approach in [212], we examine the sensor data as functions evaluated in
the (discrete) middle points of the WFS subapertures. In the two dimensional case
we consider quadratic subapertures of size d× d with d = D

n
, where D represents the

telescope diameter, i.e., the primary mirror size, and n the number of subapertures in
one direction.

Note that all considerations are valid for measurements both in x-direction sx(x, y) and
y-direction sy(x, y), as well as for non-modulated, circularly, and linearly modulated
data. Thus, we consider general measurements identified by s(x, y). Discretizing
s(x, y) delivers n2 data values sjk with j, k = 1, . . . , n.

For the following, we use the delta distribution δ (already introduced in the proof of
Theorem 3.3) and the Dirac comb IIId defined as

IIId (x, y) :=
∞∑

`=−∞

∞∑
m=−∞

δ (x− `d, y −md).

The continuous signal is captured by the wavefront sensor as follows:
First, the average of the measurements over one subaperture is calculated. This is rep-
resented as a convolution of the continuous data s(x, y) with a characteristic function
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X[−d/2,d/2]2 (x, y), i.e.,

s̃(x, y) = 1
d2

∫ x+d/2

x−d/2

∫ y+d/2

y−d/2
s(x′, y′) dy′ dx′

= 1
d2

∫ ∞
−∞

∫ ∞
−∞

s(x′, y′) · X[−d/2,d/2] (x− x′) · X[−d/2,d/2] (y − y′) dy′ dx′

= 1
d2

∫ ∞
−∞

∫ ∞
−∞

s(x′, y′) · X[−d/2,d/2]2 (x− x′, y − y′) dy′ dx′

= 1
d2

(
s ∗ X[−d/2,d/2]2

)
(x, y) .

The discretization is carried out as an application of the Dirac comb IIId assuming
that the measurements s fulfill the necessary conditions on applying the distribution
δ. Herewith, we assign a discrete set of measurements s centered on the subapertures

s =
〈
IIId, s̃

〉
=
〈 ∞∑
`=−∞

∞∑
m=−∞

δ (· − `d, · −md), s̃
〉

from the floating average values s̃(x, y) to the discrete set of subaperture middle points
{(jd, kd) : j, k ∈ Z}.
Finally, we restrict the number of measurements to the size of the region captured by
the sensor. We describe this mask by Ω as in Section 3.2.
Hence, the last step is realized as a multiplication with a second characteristic function

sj,k =
(〈

IIId, s̃
〉
· XΩ

)
j,k

for j, k = 1, . . . , n. To be precise, we usually consider less than n2 measurements due
to, e.g., the annular shape of the aperture and ignore subapertures which are too less
illuminated in order to produce reliable data.

3.7 Summary on forward models
In this Chapter we have considered the mathematical background for pyramid and
roof wavefront sensors. The theoretical analysis of the forward operators was aimed at
the subsequent development of fast and stable algorithms for wavefront reconstruction
from pyramid sensor data presented in Chapter 4 - 6. We introduced the transmission
and the phase mask model in a distributional sense. The analysis allows any kind
of modulation (no, circular, linear) to be applied to the sensors. We linearized the
initially non-linear forward operators based on the closed loop operation assumption
and further simplified the linearized operators to approximate the measurements by
only one term comparable to the finite Hilbert transform in case of the non-modulated
sensor. Further, we investigated the Fourier transforms of the “one-term“ operators
and derived the corresponding adjoint operators. Finally, we reviewed the concept of
the discrete pyramid wavefront sensor. Extensive studies of the full pyramid sensor op-
erator (i.e., calculations of Fréchet derivatives or linear approximations) are dedicated
to future work.



CHAPTER 4. LINEAR WAVEFRONT RECONSTRUCTION USING A
SINGULAR VALUE TYPE EXPANSION 67

Chapter 4

Linear wavefront reconstruction
using a singular value type
expansion

In this Chapter we present a new approach for wavefront reconstruction from non-
modulated pyramid sensor data using a singular value decomposition of the corre-
sponding operator introduced in [107] as a joint work with Ronny Ramlau. The method
is based on the simplified linearization of the sensor model represented as the finite
Hilbert transform of the incoming phase (cf one-term assumption Ln in 3.28). Due to
the non-compactness of the finite Hilbert transform operator, the classical theory for
singular systems is not applicable. Nevertheless, we can express the Moore-Penrose
inverse as a singular value type expansion with weighted Chebychev polynomials. The
method is named Singular Value Type Reconstructor (SVTR).

Section 4.1 gives a brief review on the underlying pyramid sensor model. The theo-
retical background of the finite Hilbert transform operator and the main ideas of its
singular value type expansion are contained in Section 4.2. A numerical validation of
the presented theory including details of the practical implementation of the method
itself is given in Section 4.3. In this Section, we as well introduce the idea of an it-
erative measurement extension method which is based on the forward model of the
pyramid wavefront sensor.

Having a look at the detailed representation of the forward models of the PWFS lays
the mathematical foundation for this wavefront reconstruction method. Starting with
the non-modulated pyramid sensor we simplify the non-linear model and consider the
basic principles of the roof wavefront sensor serving as an approximation of the pyramid
sensor. The assumption of small wavefront distortions, as expected in closed loop
systems, allows to consider the non-modulated roof wavefront sensor measurements
related in a linear way to the incoming phase.

Numerical results show the effectiveness of the proposed method. With a computa-
tional complexity of O(N3/2), where N = n2 indicates approximately the number of
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unknowns to be found for an n × n PWFS, our algorithm has a computational com-
plexity which makes wavefront reconstruction using a singular value type expansion
attractive, especially for XAO telescope settings. As we focus on wavefront estima-
tion only, the evaluation of the mirror actuator commands is not considered (cf Sec-
tion 8.2.1 - 8.2.2). In general, the computation of the actuator commands depends on
the underlying influence functions of the used mirror. However, for non-overlapping
bilinear influence functions which are frequently used, the mirror commands are ob-
tained by a point evaluation of the mirror shape at the positions of the actuators, and
thus the computation has no significant contribution to the computational load.

4.1 Underlying pyramid forward model

An extensive mathematical analysis of the pyramid and roof wavefront sensor models
have already been given in Chapter 3. This Section is aimed at repeating the neces-
sary considerations of the model on which the new wavefront reconstruction method
is based. Instead of the full pyramid sensor performance described by non-linear sin-
gular integral equations we consider linearized roof sensor models as a basis for the
reconstruction algorithm.

We simplify the pyramid sensor model by a substitution of the four-sided pyramidal
prism with two two-sided roof prisms [155, 212]. As a result, each roof provides two
different images of the aperture on the detector plane. Interference between the two
beams is neglected in the model. With respect to their orthogonal placement, the mea-
surements sx influence the phase Φ only in x-direction and sy only in y-direction cor-
respondingly. Taking the roof simplifications into account, the non-modulated PWFS
measurements are approximated by (cf Theorem 3.5)

sx(x, y) = − 1
2π

∫
Ωy

sin [Φ(x′, y)− Φ(x, y)]
x′ − x

dx′.

Due to the symmetry of the problem, measurements sy can be computed accordingly.
Note that we omit the multiplication with the characteristic function XΩ of the aper-
ture (as, e.g., in (3.17)) throughout this Chapter for simplicity of notation.
Another simplification follows from the assumption of a closed loop telescope system.
The incoming phases are measured after the deformable mirror, i.e., we measure al-
ready corrected wavefronts Φ � 1. Hence, the non-modulated roof wavefront sensor
measurements are approximately represented by (cf linearization of the operators in
Section 3.4 and Theorem 3.13)

sx(x, y) = − 1
2π

∫
Ωy

Φ(x′, y)− Φ(x, y)
x′ − x

dx′. (4.1)
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4.2 The singular value type expansion of the un-
derlying operator

We define the operator that is used for the description of the underlying simplified
PWFS model (4.1) and investigate some properties of the operator in detail. We
would expect a compact and ill-posed operator. But according to [57], the spectrum
is continuous and the operator non-compact.

4.2.1 Finite Hilbert transform operator
The finite Hilbert transform operator T : L2([a, b])→ L2([a, b]) is defined by

T f(x) := 1
π
p.v.

b∫
a

f(y)
y − x

dy for a ≤ x ≤ b,

with a, b ∈ R, a < b and a function f : [a, b] → R. The integral has to be under-
stood in the principal value sense and the kernel of the integral operator is given by
k(x, y) = (y − x)−1, and thus is not weakly singular. Integral operators with kernels
of the previous form being on the border to weakly singular are called singular Cauchy
integral operators as mentioned in [57].

A substitution of the intervals Ωx and Ωy to [−1, 1] enables us to express the non-
modulated wavefront sensor operator in (4.1) as the finite Hilbert transform on [−1, 1].
Due to the annular shape of the telescope aperture Ω = Ωy×Ωx, Ωx and Ωy consist of
either one or two parts. In the second case, we look at each part of Ωx = Ω1

x ∪ Ω2
x or

Ωy = Ω1
y ∪ Ω2

y separately. The transformation from Ω = [ωa, ωb] to [−1, 1] is given by

t(z) := −1 + (z − ωa)
2

ωb − ωa
,

where Ω represents one (part of the) line of the telescope pupil as shown in Figure 4.1.
Using the above substitution we obtain

1
π
p.v.

ωb∫
ωa

f(y)
y − x

dy = ωb − ωa
2

1
π
p.v.

1∫
−1

f(t−1(z))
t−1(z)− x dz.

For simplicity, we only examine

1
π
p.v.

1∫
−1

f(y)
y − x

dy

in the following. Additionally, we consider the finite Hilbert transform operator in a
weighted Lebesgue space Lω2 ([−1, 1]) with weighted norm

‖f‖2
ω :=

1∫
−1

|f(y)|2 ω(y)dy, where ω(y) := 1√
1− y2 (4.2)
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Figure 4.1: Transformation of telescope aperture, source [107]. We transform the
annular telescope aperture Ω onto the region [−1, 1]2. The blue line represents a chord
Ω = Ωy of the pupil for fixed y. If the chord consists of two parts (dotted red line),
we consider each part separately.

and define T {x,y} : Lω2 ([−1, 1])→ Lω2 ([−1, 1]) by

(T xΦ) (x, y) := 1
π
p.v.

1∫
−1

Φ(x′, y)
x′ − x

dx′

(T yΦ) (x, y) := 1
π
p.v.

1∫
−1

Φ(x, y′)
y′ − y

dy′.

(4.3)

Note that T x describes the 1d finite Hilbert transform operator integrating in x-
direction for fixed y, i.e., independent for all y, and similarly, T y in y-direction for
fixed x. The operators T x and T y represent the simplified model of the pyramid sensor
including the assumptions of a roof wavefront sensor and a closed loop system similar
to Ln in 3.28.

Proposition 4.1. The operators T {x,y} : Lω2 ([−1, 1]) → Lω2 ([−1, 1]) which describe
the simplified roof wavefront sensor model are linear, non-compact, but continuous and
injective operators with spectrum [−i, i].

Proof. See [57] for the finite Hilbert transform operator.

In the following, we only consider measurements sx in x-direction. Due to the symme-
try of the roof sensor, all considerations are also valid for sy. Using the finite Hilbert
transform operator T x defined in (4.3) the sensor data in (4.1) can be rewritten as a
sum

sx(x, y) = −1
2 [(T xΦ) (x, y)− Φ(x, y) (T x1) (x, y)] . (4.4)
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Equation (4.4) provides two possibilities of wavefront reconstruction. Either we use
the full expression and reconstruct with an iterative algorithm or we ignore the second
term because of its little impact in closed loop systems as investigations in [191] show.
In the following, we analyze the second approach.

An idea for the inversion of the measurement equations

sx(x, y) = −1
2 (T xΦ) (x, y) and sy(x, y) = 1

2 (T yΦ) (x, y) (4.5)

consists in the application of the inverse operator to the sensor data.

Proposition 4.2. Consider the operator T x : Lω2 ([−1, 1]) → Lω2 ([−1, 1]). For all
y ∈ [−1, 1] a solution of

−1
2 (T xΦ) (x, y) = sx(x, y)

is given by

Φ(x, y) = 2
 1
π

1∫
−1

sx(x′, y)
x′ − x

√
1− x′2
1− x2 dx′ + C(y)√

1− x2

 (4.6)

with

C(y) = 1
π

1∫
−1

Φ(x′, y) dx′.

Proof. See [103, 160, 205].

A reconstruction method that is based on formula (4.6) is described in Section 7.1.7
as the Finite Hilbert Transform Reconstructor (FHTR). Here, we propose a different
method for restoration using a singular value type expansion of the operator. Ac-
cording to the weighted norm we have introduced in (4.2), the singular functions we
consider for wavefront reconstruction are weighted Chebychev polynomials.

4.2.2 Decomposition with Chebychev polynomials
We define (fk, gk)k≥0 by

fk(x) := −
√

2
π
Tk+1(x), gk(x) :=

√
2
π

√
1− x2Uk(x), (4.7)

where Tk(x) and Uk(x) are Chebychev polynomials of the first and second kind given
by

Tk(x) := cos (kθ) and Uk(x) := sin [(k + 1)θ]
sin (θ)

with x = cos (θ). Furthermore, we set f−1(x) :=
√

1
π
.

Proposition 4.3. The functions {fk}k≥−1 and {gk}k≥0 defined in (4.7) are orthonor-
mal in Lω2 ([−1, 1]) and the functions {fk}k≥−1 are a complete orthonormal system in
Lω2 ([−1, 1]).
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Proof. First, we prove the normalization of fk and gk. It follows immediately with the
substitution x = cos (ξ)

‖f−1‖2
ω = 1

π

1∫
−1

1√
1− x2

dx = 1
π

π∫
0

1√
1− cos2 (ξ)

sin (ξ) dξ = 1
π

π∫
0

1 dx = 1

and

‖fk−1‖2
ω = 2

π

1∫
−1

|Tk(x)2| 1√
1− x2

dx = 2
π

1∫
−1

cos2 (k arccos (x)) 1√
1− x2

dx

= 2
π

π∫
0

cos2 (kξ)√
1− cos2 (ξ)

sin (ξ) dξ = 2
π

π∫
0

cos2 (kξ) dξ

= 2
π

[
ξ

2 + sin (kξ) cos (kξ)
2k

]π
0

= 1

as well as

‖gk−1‖2
ω = 2

π

1∫
−1

(
1− x2

)
|Uk−1(x)|2 1√

1− x2
dx

= 2
π

1∫
−1

(
1− x2

) sin2 (k arccos (x))
sin2 (arccos (x))

1√
1− x2

dx

= 2
π

π∫
0

(
1− cos2 (ξ)

) sin2 (kξ)
sin2 (ξ)

1√
1− cos2 (ξ)

sin (ξ) dξ

= 2
π

π∫
0

sin2 (kξ)dξ = 2
π

[
ξ

2 + cos (kξ) sin (kξ)
2k

]π
0

= 1

for all k ≥ 1.

In order to prove the orthogonality we choose m,n ≥ 1 and m 6= n. With substitution
(as described above) we obtain

〈fm−1, fn−1〉ω =
1∫
−1

fm−1(x)fn−1(x) 1√
1− x2

dx

= 2
π

1∫
−1

Tm(x)Tn(x) 1√
1− x2

dx

= 2
π

1∫
−1

cos (m arccos (x)) cos (n arccos (x)) 1√
1− x2

dx
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= 2
π

π∫
0

cos (mξ) cos (nξ) 1√
1− cos2 (ξ)

sin (ξ) dξ

= 2
π

π∫
0

cos (mξ) cos (nξ) dξ = 0

and

〈gm−1, gn−1〉ω =
1∫
−1

gm−1(x)gn−1(x) 1√
1− x2

dx

= 2
π

1∫
−1

(
1− x2

)
Um−1(x)Un−1(x) 1√

1− x2
dx

= 2
π

1∫
−1

√
1− x2 sin (m arccos (x)) sin (n arccos (x))

sin2 (arccos (x)) dx

= 2
π

π∫
0

√
1− cos (ξ)2 sin (mξ) sin (nξ)

sin2 (ξ) sin (ξ) dξ

= 2
π

π∫
0

sin (mξ) sin (nξ) dξ = 0.

Note that 〈·, ·〉ω denotes the inner product in Lω2 ([−1, 1]). Furthermore, it holds for
all k ≥ 1

〈f−1, fk−1〉ω =
1∫
−1

√
1
π
fk−1(x) 1√

1− x2
dx = −

√
2
π

1∫
−1

Tk(x) 1√
1− x2

dx

= −
√

2
π

1∫
−1

cos (k arccos (x)) 1√
1− x2

dx

= −
√

2
π

π∫
0

cos (kξ) 1√
1− cos2 (ξ)

sin (ξ) dξ

= −
√

2
π

π∫
0

cos (kξ) dξ = 0.

The completeness of {fk}k≥−1 follows from the completeness of Chebychev polynomi-
als.

Now, we present a result that lays the foundations for the singular value type expan-
sion. A similar one has already been proven in [205].
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Proposition 4.4. For {fk}k≥−1 and {gk}k≥0 defined in (4.7) hold the equations

T xfk = gk, ∀ k ∈ N0 and T xf−1 = 0,

where T x represents the finite Hilbert transform operator defined in (4.3).

Proof. The proof is centered around the equality

− 1
π

π∫
0

cos (kη)
cos η − cos ξ sin η dη = sin (kξ), (4.8)

which is shown by the application of the residue theorem in [95, 103].
We verify

√
π
2 T xfk−1 =

√
π
2gk−1 for all k ≥ 1 and T xf−1 = 0.

√
π

2 T xfk−1(x) =
√
π

2
1
π
p.v.

1∫
−1

fk−1(x′)
x′ − x

dx′ = − 1
π
p.v.

1∫
−1

Tk(x′)
x′ − x

dx′

= − 1
π
p.v.

1∫
−1

cos (k arccos (x′))
x′ − x

dx′.

The substitutions x = cos (ξ), x′ = cos (η), and formula (4.8) lead to

√
π

2 T xfk−1(x) 3.12= − 1
π

π∫
0

cos (kη)
cos η − cos ξ sin η dη

(4.8)= sin (kξ) = sin (k arccos (x)) = sin (arccos (x))sin (k arccos (x))
sin (arccos (x))

3.12=


√

1− x2Uk−1(x) =
√
π

2 gk−1(x), for k ≥ 1,

0, for k = 0.

With the complete orthonormal system (fk)k≥−1 we can express the solution of the
wavefront reconstruction problem in (4.5) as a linear combination of basis functions

Φ(x, y) =
∞∑

k=−1
Φk,yfk(x) (4.9)

with real coefficients Φk,y = 〈Φ(·, y), fk〉ω for k ≥ −1. Note that we only consider
measurements in x-direction and fix y to obtain a one dimensional reconstruction
problem. Further explanations of the reduction from the two dimensional problem to
a one dimensional problem will be given in the next Section.
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Obviously, for T x defined in (4.3), the application of Proposition 4.4 and (4.9) results
in

(T xΦ) (·, y) = T x

 ∞∑
k=−1

Φk,yfk


= Φ−1,yT xf−1 +

∞∑
k=0

Φk,ygk =
∞∑
k=0

Φk,ygk =
∞∑
k=0
〈Φ(·, y), fk〉ωgk. (4.10)

This representation is similar to a singular value expansion of the operator T x. Al-
though the non-compactness of T x does not allow a singular system (σk, fk, gk)k≥0
in the usual sense, equality (4.10) describes a singular value type expansion (with all
“singular“ values equal to one) of the operator T x. In contrast to compact operators,
zero is not an accumulation point of the singular type values (σk). The fact that
all singular values are equal to one follows from the proper choice of the weighted
Lebesgue space. Since the singular values do not decrease to zero, and therefore all
contributions to the solution have the same weight, the application of regularization
methods for the problem of wavefront reconstruction from pyramid sensor data based
on a singular value type expansion of the finite Hilbert transform in Lω2 ([−1, 1]) is not
necessary.

Equation (4.10) and the injectivity of T x characterize

N (T x) = {0},

N (T x)⊥ = lin{fk : k ≥ −1}L
ω
2 ([−1,1]) = Lω2 ([−1, 1]),

R(T x) = lin{gk : k ≥ 0}.

Note that R(T x) does not contain constant functions. However, a global piston mode,
which is described by a constant function over the whole aperture, cannot be detected
by the pyramid wavefront sensor anyway (cf Proposition 5.1).

Using the singular type system (fk, gk)k≥0 the Moore-Penrose inverse of the operator
T x is represented as a sum.

Theorem 4.5. Let T x be defined in (4.3) with corresponding singular type system
(fk, gk)k≥0 given in (4.7). Then, the following assertions hold:

i) sx(·, y) ∈ D(T †x) ⇔
∞∑
k=0
|〈sx(·, y), gk〉ω|2 <∞. (Picard criterion)

ii) If sx(·, y) ∈ D(T †x), then T †xsx(·, y) =
∞∑
k=0
〈sx(·, y), gk〉ωfk.

Proof. The proof of the Theorem is analogous to that one of [58, Theorem 2.8] for
compact operators.
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Theorem 4.5 characterizes the best approximate solution of equation (4.5). We de-
scribe the reconstructed wavefront Φ (·, y) ∈ Lω2 ([−1, 1]) by

Φ(x, y) =
∞∑
k=0
〈−2sx(·, y), gk〉ωfk(x). (4.11)

Using the above formula we are able to reconstruct all modes of the incoming phase
except constant terms, called global piston modes. Investigations of the pyramid and
roof sensor operators show that these modes are in the null space of the operators, i.e.,
cannot be seen by the sensor (cf Proposition 5.1). Hence, equation (4.11) provides a
unique reconstruction up to a constant additive term which, due to the null space of
the operator, suffices for wavefront reconstruction from pyramid sensor data.

4.3 Numerical validation
For testing the effectiveness of the proposed method, we use the end-to-end simulation
tool Octopus provided by the European Southern Observatory. We consider the closed
loop performance of a large-scale XAO system on a telescope with a primary mirror
diameter of D = 42 m as it was originally planned for the ELT. The measurements of
the incoming phase are received from a pyramid wavefront sensor. Furthermore, we
assume a 9-layer atmospheric model where each layer is a random realization of the von
Karman power spectrum. The system runs at a frequency of 3 kHz and we consider
higher-order DM influence functions. The simulation parameters are summarized in
Table 4.1. A simple integrator is used for the temporal control and the gain is optimized
manually (on 500 time steps) with a resolution of 0.1.

For the numerical implementation, we choose the number of singular type functions
in (4.11) such that we only use those with spatial frequencies which can be detected by
the sensor. Thus, the Chebychev expansion is truncated at a value kmax corresponding
to the highest frequency seen by the sensor.

Due to the fact that the sensor provides measurements which are averaged over sub-
apertures, the sampling points are suggested by the model itself as the middle points
of subapertures in x- and y-direction {xmj } and {ymj }1≤j≤n for j = 1, . . . , n, where n
is the number of subapertures. The operator T x acts row-wise and therefore indepen-
dently for y onto the wavefront. Hence, we reduce the two dimensional problem of
wavefront reconstruction (4.5) to a one dimensional problem by fixing y ∈ {ymj } and
considering

sx(x, y) = −1
2 (T xΦ) (x, y).

As already mentioned, we substitute the annular telescope aperture Ω onto the squared
region [−1, 1]2, i.e., Ωy ×Ωx ⊂ [−1, 1]× [−1, 1], and split Ω into n×n subapertures of
size d = D

n
. We assume the sensor data sj = s(xmj ) to be given in the middle points

of subapertures Ωy
j = [xyj−1, x

y
j ], where {x

y
j}1≤j≤n+1 represent the corner points of sub-

apertures. There exist several possibilities for the representation of the measurements,
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Main parameters
telescope diameter 42 m
central obstruction 28%
science target on-axis (SCAO)
pyramid WFS
science band K (2200 nm)
sensing band R (700 nm)
PWFS FoV 2.3 arcsec
frame rate 3 kHz
DM delay 1
higher-order DM influence functions
von Karman atmospheric model with L0 = 25 m
9 simulated atmospheric layers with heights from 47 m to 18 km
Fried radius r0 = 0.129 m for median atmosphere

Table 4.1: Parameters of ELT simulations for testing the SVTR.

e.g., spline functions. In our approach, we assume that the pyramid data are a linear
combination of characteristic functions of the subapertures, i.e.,

sx(x, y) =
n∑
i=1

siXΩyi
(x).

Under these assumptions the Picard criterion of Theorem 4.5 is fulfilled and equa-
tion (4.11) reads as

Φx(x, y) =
kmax∑
k=0
〈−2sx(·, y), gk〉ωfk(x) = −2

kmax∑
k=0

1∫
−1

sx(x′, y)gk(x′)√
1− x′2

dx′ fk(x)

= −2
kmax∑
k=0

1∫
−1

∑n
i=1 siXΩyi

(x′)gk(x′)
√

1− x′2
dx′ fk(x)

= −2
n∑
i=1

si
kmax∑
k=0

∫ xyi

xyi−1

gk(x′)√
1− x′2

dx′ fk(x) = −2
n∑
i=1

siαi(x, y)

if we define

αi(x, y) :=
kmax∑
k=0

∫ xyi

xyi−1

gk(x′)√
1− x′2

dx′ fk(x).

Note that the functions αi (x, y) are independent of the actual measurements and can
be pre-computed. Therefore, the truncation mode kmax do not influence the speed of
the algorithm.
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In principle, the wavefront can be reconstructed from either the measurements in x-
or y-direction. However, due to strong horizontal and vertical artifacts in the single
reconstructions, we use both measurement sets (see Section 5.2.4 for more precise
investigations). One way of combining the restored phases is the following: For every
fixed y ∈ {ymj }1≤j≤n we compute Φx(x, y) and for every fixed x ∈ {xmj }1≤j≤n we
calculate Φy(x, y) accordingly. In total, we obtain two reconstructions and describe the
final reconstructed wavefront Φ̃(x, y) by the arithmetic mean of the two reconstructions
Φx and Φy as proposed in [191].

Altogether, the proposed method consists in a multiplication of the measurements with
the pre-computed functions αi (x, y) containing all the information about the singular
system and a final averaging of the two reconstructions. We multiply the data sx and
sy of size

√
N ×

√
N with the functions αi of size

√
N ×

√
N where N denotes the

total number of subapertures. Hence, the computational complexity of the method is
composed of O

(
N
√
N
)
for the multiplication and O

(√
N
)
for the summation and

scales as O
(
N3/2

)
in total.

We test the performance of the method for an XAO system having a 200×200 pyramid
wavefront sensor without modulation. The quality is evaluated for median atmospheric
conditions (Fried radius r0 = 0.129 m) and a photon flux of 10000 photons per sub-
aperture per frame as summarized in Table 4.2. In order to get a fast convergence
to high Strehl ratios and to reduce the computational effort of the method, for the
first 14 time steps we use the Cumulative Reconstructor with Domain Decomposition
developed for Shack-Hartmann sensors [179].

Test parameters
modulation radius in λ/D 0
number of subapertures 200× 200

number of active subapertures 28796 out of 40000
atmosphere median

photons per subaperture 10000
iterations 1000

Table 4.2: Test case setting for Octopus simulations
using the SVTR.

First, we analyze the behavior of
the errors of the presented re-
construction method in a self-
created simulation environment.
We use a pyramid sensor model
given by the finite Hilbert trans-
form without any additional in-
fluences in the forward model,
i.e., we use data generated by the
application of the finite Hilbert
transform instead of pyramid
sensor measurements. The prob-
lem is also known as airfoil equa-
tion. One can immediately see in
Figure 4.2 that the reconstruc-
tion results are good in the interior of the telescope pupil and the main error sources
are at the boundary of the annular aperture.



CHAPTER 4. LINEAR WAVEFRONT RECONSTRUCTION USING A
SINGULAR VALUE TYPE EXPANSION 79

Figure 4.2: Wavefront reconstruction with the SVTR, source [107]. The incoming
wavefront averaged over subapertures, the reconstructed wavefront as well as the resid-
ual wavefront are plotted for the reconstruction without measurement extension. The
highest errors occur at the boundary of the telescope pupil mask. The RMSE is around
3.1527× 10−7.

Figure 4.3: Scheme of the measurement continuation, [107]. For the iterative method
with measurement extension we reconstruct on the whole square [−1, 1]× [−1, 1]. In
the darkgray region the real measurements are known. Outside the annular shape
(lightgray region) we calculate extended measurements using the finite Hilbert trans-
form operator.

4.3.1 Iterative reconstruction using a measurement extension
In order to reduce the reconstruction errors at the boundary of the pupil, we establish
a measurement extension for our method. The idea is to create data at a bigger
domain than provided by the wavefront sensor. Similar data extrapolation approaches
using for example Gerchberg-type iterations or extensions by copying the boundary
slope have already been investigated in [20, 161, 177, 231, 232] for different kinds
of wavefront sensors. In contrast to these methods, we concentrate on measurement
continuation especially for pyramid sensors. Due to the fact that the forward model of
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Figure 4.4: SVTR with iterative measurement extension, source [107]. The incom-
ing wavefront averaged over subapertures, the reconstructed wavefront as well as the
residual wavefront are plotted for the iterative reconstruction with measurement ex-
tension. Compared to Figure 4.2, we could improve the errors on the boundary. After
20 iteration steps, the RMSE is around 8.8045× 10−8.

the non-modulated PWFS is approximated by the finite Hilbert transform, we compute
additional data outside the aperture by the application of the Hilbert transform:

Let srealx and srealy be real PWFS data given in the middle points of subapertures of
the annular telescope pupil and TM with M(x, y) := (x, y) · X([−1,1]×[−1,1])\Ω(x, y) a
multiplication operator that sets measurements inside the annular aperture Ω to zero.
The operator Ẽ : Φ→ s̃ describes the forward simulation necessary for the extension,
e.g., the application of the finite Hilbert transform

s̃ (x, y) = ẼΦ(x, y) = − 1
2π p.v.

1∫
−1

Φ(x′, y)
x′ − x

dx′,

and E−1 : s → Φ̃ the Singular Value Type Reconstructor as proposed above but
now on the square region [−1, 1] × [−1, 1], i.e., we skip the transition to the borders
of the telescope aperture. For the first iteration step we do not have any informa-
tion on the incoming phase outside the telescope pupil. Therefore, we fill the square
[−1, 1] × [−1, 1] outside the annular aperture with zeros. Unlike previously, after
the reconstruction E−1 we obtain data of the incoming phase on the whole region
[−1, 1] × [−1, 1]. Consequently, the application of the forward operator Ẽ delivers
suitable measurements on the whole square. From now on, we use measurements pro-
vided by the pyramid wavefront sensor in the area of the telescope aperture (depicted
as darkgray region in Figure 4.3) and self-created data in the region of the square left
over (indicated as lightgray region in Figure 4.3). In order to get extended measure-

ments ssquarex,i and ssquarey,i , 1 ≤ i ≤ imax on the whole square [−1, 1]× [−1, 1], we apply

ssquarex,1 = srealx + zero-padding
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for the first iteration step and

ssquarex,i+1 = βTMẼE−1ssquarex,i + srealx

with an attenuation coefficient β for 2 ≤ i ≤ imax. The data {ssquarey,i }1≤i≤imax are
computed accordingly. This type of fixpoint iteration is performed until we reach
satisfying reconstruction quality. Due to the uniqueness up to modes of order zero
(piston mode) of the reconstruction using a singular value type expansion in (4.11)
represented by the operator E−1, for every extension technique Ẽ (which in this setting
is the finite Hilbert transform) we obtain a unique solution in N (E)⊥. Let us again
assume that our extended measurements are given by

ssquare = sreal + sext

for the real pyramid sensor measurements sreal and the artificially extended measure-
ments sext = TMẼE−1ssquare with sext|Ω = 0. Since E−1sreal and E−1sext deliver
unique solutions in N (E)⊥, we obtain, due to linearity of the finite Hilbert transform
operator, a unique reconstruction

Φ̃ = E−1ssquare = E−1sreal + E−1sext

for each extension sext as well.

Numerical results show that the singular value type reconstruction method including
measurement extension delivers smaller errors at the boundary of the annular aper-
ture shape as shown in Figure 4.4. After 20 iterations we could improve the RMSE
(root-mean-square error) from 3.1527×10−7 to 8.8045×10−8. The biggest reconstruc-
tion errors appear at the domain where the boundary of the telescope pupil reaches
the limits of the interval [−1, 1]. From the theoretical point of view this errors are
confirmed. The distortions result from the singularities of the weight function near
x = ±1. One only gets a stable inversion of the finite Hilbert transform in the interval
[a, b] if one has information on a slightly bigger interval [a− ε, b+ ε] for ε > 0. For even
larger extensions and further reduction of the errors near x = ±1 we only attained
slight improvements with a gain of less than 0.01 in terms of the LE Strehl ratio.

Let us now test the reconstruction quality of the proposed algorithms using the simu-
lation tool Octopus. The convergence rates of both singular value type reconstruction
methods with and without measurement extension are illustrated in Figure 4.5. It in-
dicates the resulting long-exposure Strehl ratio in the K-band. For the second method,
we use CuReD for the first 14 time steps of the simulation and afterwards measure-
ment continuation with 3 iterations until time step 40. After 1000 iterations the LE
Strehl ratio is around 0.89 for both reconstruction approaches.

Finally, we compare the Hilbert transform methods SVTR and FHTR (cf Section 7.1.7
and [191]) with Octopus results summarized in Table 4.3. The simulation parameters
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Figure 4.5: LE Strehl ratio in the K-band obtained with the singular value type
reconstructor using the parameters from Table 4.2, source [107]. At the beginning, the
continuation of measurements guarantees a faster convergence to higher Strehl ratios.
After 1000 iterations the LE Strehl ratio is about 0.89 for both SVTR methods.

for the METIS and EPICS instruments of the ELT correspond to those later specified
in Table 7.3 for the non-modulated sensor without taking telescope spiders into ac-
count. A direct comparison of both Hilbert transform methods shows that the FHTR
outperforms the SVTR for simulations of the METIS instrument while for the EPICS
instrument it is the other way round. The better performance of the SVTR on EPICS
may come from a smaller subaperture size on the XAO system compared to the SCAO
system of METIS to which the SVTR method is quite sensitive.

photon flux EPICS METIS
FHTR SVTR FHTR SVTR

5 0.7826
10 0.8331 0.5143
50 0.853 0.8840 0.7372
100 0.8867 0.7379
1000 0.8876 0.7386
10000 0.8876 0.779 0.7404

Table 4.3: LE Strehl ratios obtained with the Finite Hilbert Transform Reconstructor
and the Singular Value Type Reconstructor on an XAO system and a SCAO system.
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4.4 Summary on the SVTR method
We have presented a new method of wavefront reconstruction for the non-modulated
pyramid sensor by accurately inverting the finite Hilbert transform. The method is
based on a singular value type expansion developed for the finite Hilbert transform
operator. The singular functions correspond to weighted Chebychev polynomials, the
singular values are all equal to one. The new pyramid reconstructor provides good
quality and speed results for small subaperture sizes but a huge number of active
subapertures or DM actuators. With a computational complexity of O

(
N3/2

)
the

proposed method is very efficient which makes the approach attractive for wavefront
reconstruction, especially in extreme AO.

Until now, the method has only been applied to data from pyramid sensors without
modulation. The underlying theory can be adapted to the modulated sensor as well
but the singular value decomposition of the considered pyramid sensor operator will
change. Hence, one needs to find the singular values and singular functions of the
linearized operators including modulation, e.g., of Lc defined in (3.28). Additionally,
further improvements may be attainable for the usage of a singular value decompo-
sition of more appropriate pyramid sensor models. For instance, we expect higher
reconstruction quality if we linearize the full pyramid sensor operator and derive its
singular value expansion. However, this derivation is extremely difficult or may even
be impossible. Moreover, we want to remark that we considered the SVD in the
weighted Lebesgue space Lω2

(
[−1, 1]2

)
. If we examine the pyramid sensor operator

from H11/6 (R2) into L2 (R2), the corresponding SVD changes, since it is related to
the inner product. The choice of the underlying space can affect the accuracy of
wavefront estimates as well.

In principle, the above presented iterative measurement extension method can be com-
bined with any algorithm for wavefront estimation. The idea was as well investigated in
the presence of large telescope spiders. Unfortunately, the iterative measurement con-
tinuation applied under the obstructed spider areas could not avoid differential piston
effects that severely degrade the image quality as precisely described in Section 8.3.2.

A detailed comparison of the quality performance between the SVTR algorithm and
other wavefront reconstruction methods for the PWFS is given in Section 7.2. Briefly
summarized, with respect to computational time, the SVTR takes an intermediate
position. The same is valid for the obtainable reconstruction quality. However, we
strongly believe in big improvements of the approach for future investigations of more
appropriate pyramid sensor models.
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Chapter 5

Linear wavefront reconstruction
using iterative methods

This Chapter addresses the problem of stable and highly accurate wavefront correction
for large-scale real-time closed loop Adaptive Optics systems on ELTs using iterative
methods. We study and compare the performance (in terms of correction quality and
speed) of well-known mathematical algorithms for solving Inverse Problems, namely
the conjugate gradient method, steepest descent, Landweber, Landweber-Kaczmarz,
and steepest descent-Kaczmarz iteration. The suggested approaches make real-time
wavefront reconstruction easily feasible even for XAO systems. Parts of this Chapter
rely on [109] and are a joint work with Iuliia Shatokhina and Ronny Ramlau.

We start with recalling the theoretical principles of wavefront sensing using the pyra-
mid sensor in Section 5.1. Afterwards, we describe several iterative algorithms, namely
the conjugate gradient method for the normal equation and the steepest descent
method, Landweber iteration as well as Kaczmarz type algorithms in Section 5.2.
This Section contains details on the numerical implementation of the involved opera-
tors as well. Section 5.3 presents the performance of the proposed algorithms and a
comparison with respect to the achieved reconstruction quality. Finally, in Section 5.4
we evaluate and compare the computational complexities of the analyzed approaches.
Both the reconstruction quality and the speed of the algorithms are additionally com-
pared versus those of an interaction-matrix-based approach (cf Section 8.2).

5.1 Underlying forward models
All algorithms presented in this Chapter are based on a linearization of the wavefront
sensor operators derived in Section 3.4. The corresponding adjoint operators were
investigated in Section 3.5. The underlying theory needed for the application of the
iterative methods is briefly recalled now. For a precise analysis of the full pyramid
sensor model, details about the linearization procedure and proofs we refer the reader
to Chapter 3 of the Thesis.



86 CHAPTER 5. LINEAR WAVEFRONT RECONSTRUCTION USING
ITERATIVE METHODS

Generally, the two signal sets s = [sx, sy] provided by the pyramid sensor are given by

sx = −1
2P xΦ

sy = 1
2P yΦ.

(5.1)

Due to the symmetry of the problem, we only consider measurements in x-direction in
the following. Data in y-direction are investigated analogously. Under the roof sensor
assumption, the PWFS signal corresponding to no, circular and linear modulation is
approximated by

s{n,c,l},linx = −1
2

(
R{n,c,l},linx Φ

)
(x, y)

with
(
R{n,c,l},linx Φ

)
(x, y) := XΩ(x, y) 1

π

∫
Ωy

[Φ(x′, y)− Φ(x, y)] · k{n,c,l}(x′ − x)
x′ − x

dx′ (5.2)

indicating the linearized roof sensor operators (cf Theorem 3.13).
The linearized roof sensor operators R{n,c,l},lin offer a further possibility for simplifi-
cation of the model due to the splitting(

R{n,c,l},linx Φ
)

(x, y) = XΩ(x, y)
[(

L{n,c,l}x Φ
)

(x, y)− Φ(x, y) ·
(
L{n,c,l}x 1

)
(x, y)

]
(5.3)

for the integral operators L{n,c,l}x : H11/6 (R2)→ L2 (R2) defined by

(L{n,c,l}x Φ)(x, y) := 1
π
p.v.

∫
Ωy

Φ(x′, y)k{n,c,l} (x′ − x)
x′ − x

dx′ (5.4)

as introduced in Definition 3.14 and (3.29). Dropping the second term in (5.3) leads
to the Inverse Problem

sx = −1
2L{n,c,l}x Φ (5.5)

for pyramid sensor data sx.

The adjoint operators of the roof sensor approximations in L2 (R2) are represented by

((
L{n,c,l}x

)∗
Ψ
)

(x, y) = − 1
π
p.v.

∫
Ωy

Ψ(x′, y) · k{n,c,l}(x′ − x)
x′ − x

dx′,

((
R{n,c,l},linx

)∗
Ψ
)

(x, y) = − 1
π
p.v.

∫
Ωy

[Ψ(x′, y) + Ψ(x, y)] · k{n,c,l}(x′ − x)
x′ − x

dx′.

as given in Proposition 3.16 and Proposition 3.17. Additionally, we can consider
the adjoints from L2 (R2) into H11/6 (R2) by utilizing the embedding described in
Section 3.5.
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5.2 Iterative wavefront reconstruction methods
In this Section, we adapt well-known iterative algorithms to the problem of wavefront
reconstruction from pyramid sensor data.
For wavefront reconstruction we solve the two integral equations

−1
2 R{n,c,l},linx Φ = sx (5.6)
1
2 R{n,c,l},liny Φ = sy, (5.7)

where R{n,c,l},linx are the linearized operators of the roof WFS and s real pyramid sensor
measurements. For simplicity of notation, we use Q := 1

2 ·
[
−R{n,c,l},linx ,R{n,c,l},liny

]
in

the following since the basic idea is the same for all types of modulation. Moreover, we
only concentrate on solving the Inverse Problem (5.6)-(5.7), but mention that solutions
of (5.1) and (5.5) can be calculated accordingly.

Let us focus on concrete wavefront reconstruction algorithms for pyramid sensor data
using iterative methods. In particular, we consider the conjugate gradient algorithm
for the normal equation (CGNE), the steepest descent (SD), and Landweber iteration.
Since the pyramid sensor provides two measurements sx and sy, the above named
approaches are applied twice, i.e., seperately in both directions, and deliver two solu-
tions Φ = [Φx,Φy], one in x- and one in y- direction. The final reconstruction Φrec is
then computed as the average of the two temporary solutions. An alternative com-
bination of the two measurements sx and sy using Kaczmarz loops is investigated in
Section 5.2.4. Note that the theory of the presented algorithms is mainly based on
[58, 133]. The considered norms are the L2-norms.

5.2.1 CGNE approach

The conjugate gradient (CG) method is one of the most powerful algorithms for solving
self-adjoint, positive (semi-)definite linear equations [22, 58, 90, 96, 101, 118]. For
solving the wavefront reconstruction problem we apply the conjugate gradient method
to the normal equation

Q∗QΦ = Q∗s. (5.8)

Let Q† denote the Moore-Penrose generalized inverse. The CG-iterates (Φi) converge
to Q†s for all s ∈ D(Q†) [58] by requiring the fewest iterations among all semiiterative
methods.

Algorithm 5.1 describes the CGNE method applied to the Inverse Problem of wave-
front reconstruction from pyramid wavefront sensor data. Note that for the following
algorithms we fix the number of iterations by K. Further considerations on stopping
rules and optimal choices of K follow in Section 5.3.2.
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Algorithm 5.1 CGNE for pyramid sensors
choose Φ0, initialize d0 = s−QΦ0, p1 = s0 = Q∗d0

for i = 1, . . . K do
qi = Qpi

αi = ||si−1||2/||qi||2

Φi = Φi−1 + αipi

di = di−1 − αiqi
si = Q∗di

βi = ||si||2/||si−1||2

pi+1 = si + βipi

endfor
Φrec = (Φx,K + Φy,K) /2

5.2.2 Steepest descent approach
For solving the system (5.6)-(5.7) we are additionally interested in the method of
steepest descent for which we consider different choices of the step sizes in the iterative
process. For pyramid sensors, we use the SD method to minimize the least-squares
functional

J (Φ) = ||QΦ− s||2L2
→ min . (5.9)

The method of steepest descent was originally introduced by Cauchy [31] as one of
the most basic procedures to minimize a differentiable functional. A popular step
size is determined by an exact line search in the direction of the negative gradient.
Alternative choices of the step size have already been considered, e.g., in [184, 185]
and will be discussed below for the problem of wavefront reconstruction from pyramid
data using the SD method. The gradient of the classical least-squares functional is
given by

J ′ (Φ) = Q∗ (QΦ− s) (5.10)
and the resulting algorithm reads as Algorithm 5.2.

Algorithm 5.2 Steepest Descent for pyramid sensors
choose Φ0

for i = 1, . . . K do
di−1 = −J ′ (Φi−1)
τi−1 = min

t∈[0,∞)
J (Φi−1 + tdi−1)

Φi = Φi−1 + τi−1di−1

endfor
Φrec = (Φx,K + Φy,K) /2
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Step size choices and convergence

The speed of convergence of the gradient iteration

Φi = Φi−1 + τi−1di−1

di−1 = −J ′(Φi−1)

depends highly on the choice of the step size τi. We consider the classical steepest
descent (line search) step size that is defined by

τSDi = min
t∈[0.∞)

J (Φi + tdi) .

This means that an exact line search is performed in the direction of steepest descent
which corresponds to the direction of the negative gradient. For the least-squares
functional (5.9) and corresponding derivative (5.10), the steepest descent step size
with di = −Q∗ (QΦi − s) reads as

τSDi = ||di||2

||Qdi||2
(5.11)

and results in the so called Cauchy method.

If we minimize the gradient norm along the search direction, we obtain another line
search method for finite dimensions, namely the method of minimal gradient (MG)
[46] given by

τMG
i = ||Qdi||2

||Q∗Qdi||2
. (5.12)

From Cauchy-Schwarz inequality it follows τMG
i ≤ τSDi .

Because of zigzagging between consecutive steps the SD method suffers from slow con-
vergence in some cases. To overcome these effects, a fast and efficient alternative step
size choice was introduced by Barzilai and Borwein (BB) in [13]. The BB technique
is motivated by quasi-Newton methods and derived from a two-point approximation
to the secant equation. There exist two versions of the BB method which are defined
by

τBB1
i = 〈∆Φi,∆di〉

〈∆di,∆di〉
and τBB2

i = 〈∆Φi,∆Φi〉
〈∆Φi,∆di〉

with ∆Φi = Φi−Φi−1 and ∆di = di−di−1. Plugging in the calculations corresponding
to Algorithm 5.2 we obtain

∆Φi = Φi − Φi−1 = τi−1di−1,

∆di = di − di−1 = −Q∗Q (Φi − Φi−1) = −τi−1Q
∗Qdi−1,



90 CHAPTER 5. LINEAR WAVEFRONT RECONSTRUCTION USING
ITERATIVE METHODS

since the involved operators are linear. Therefore, the BB step sizes are rewritten as

τBB1
i = ||Qdi−1||2

||Q∗Qdi−1||2
and τBB2

i = ||di−1||2

||Qdi−1||2
,

i.e.,
τBB1
i = τMG

i−1 and τBB2
i = τSDi−1.

The idea is to use additional information of the previous iteration to compute the
step size for the current iteration. Once again with the Cauchy-Schwarz inequality we
obtain τBB1

i ≤ τBB2
i . Generally, while the SD and MG method decrease monotonically,

the BB step size choices are non-monotone as the error behaves non-monotonously,
i.e., ||Φ− Φi+1|| ≤ ||Φ− Φi|| for the true solution Φ is not fulfilled for every iteration
i. Nevertheless, the BB method converges to a solution of (5.9) as found in [170].

The Cauchy-Barzilai-Borwein (CBB) step size is based on the idea to use the SD
and BB step size alternating. The method, which was introduced in 2003 and is also
called alternate step size (AS) gradient method, aims at reducing the zigzag-effect of
the Cauchy method [45], and therefore leads to a faster convergence. The promising
alternative to the BB method reads as

τCBBi = τASi =
τSDi , for i odd,
τBB2
i , for i even.

Due to τBB2
i = τSDi−1, we use the same step size twice in two consecutive iterations.

Furthermore, an alternate version of the MG method called alternate minimization
(AM) gradient method was proposed in [46] having an SD iteration for every second
step. Generally, the SD method becomes faster when one non-monotone (e.g., BB)
step is made even after several SD steps [230]. In addition, a variety of step size choices
have been introduced using combinations or shortened step size versions of the above
mentioned options.

To reduce the computational effort of the algorithms a fixed step size can be used.
Step sizes which are tuned heuristically depend mainly on the size of the telescope and
the resolution of the pyramid wavefront sensor as well as its modulation amplitude.
The steepest descent algorithm for the least-squares functional (5.9) reduces to the
standard Landweber iteration for a fixed step size τi = β.

5.2.3 Landweber approach
For Landweber iteration [127], the normal equation (5.8) is transformed into the equiv-
alent fixed point equation

Φ = Φ + Q∗ (s−QΦ) .
In order to ensure convergence by ||Q|| ≤ 1 we introduce a relaxation parameter
0 < β ≤ ||Q||−2 and iterate by

Φi = Φi−1 + βQ∗ (s−QΦi−1) , i ∈ N.
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Then, (Φi) converges to a least-squares solution of (5.6)-(5.7) for s ∈ D(Q†) [58].

The Landweber iteration modified for wavefront reconstruction based on pyramid sen-
sor measurements is described by Algorithm 5.3).

Algorithm 5.3 linear Landweber Iteration for Pyramid Sensors (LIPS)
choose Φ0, set relaxation parameter β
for i = 1, . . . K do

Φi = Φi−1 + βQ∗ (s−QΦi−1)
endfor
Φrec = (Φx,K + Φy,K) /2

Besides the above discussed methods for pyramid sensors and the Singular Value Type
Reconstructor introduced in Chapter 4, there already exist several algorithms provid-
ing two reconstructions, one from data sx and one from data sy [191, 196]. Let us now
introduced a different approach which combines the reconstructions already during the
iteration steps.

5.2.4 Kaczmarz methods for wavefront reconstruction from
pyramid sensor data

For the reconstruction of the incoming wavefront, the pyramid sensor provides two
data sets sx and sy. This structure gives rise to the question of why use both data sets
for wavefront reconstruction at all. However, there are several facts that support the
usage of both measurement sets. On the one hand, we expect better reconstruction
quality in case we utilize more information. This argument is additionally strengthened
by the presence of noise in the sensor measuring process. Moreover, it was already
stated in [212] that only the combination of both pyramid data sets is completely
meaningful. Deeper investigations of the underlying operators in x- and y-direction
show that they have different null spaces, i.e., depending on the underlying model
of the reconstructors there exist modes that cannot be reconstructed. For instance,
pyramid and roof wavefront sensors are not able to detect a constant added to the
incoming phase Φ. This undetectable constant, called piston mode (mode of order 0),
has no influence on the measurements s.
While the null space of the operators representing the pyramid sensor model consists
only of the global piston mode, which anyway does not influence the imaging quality,
the null spaces of the roof sensor operators in x- and y-direction contain more and
different modes.

In order to characterize effects that are invisible in sensor data, we discuss selected
wavefront modes (of order 0 and 1) which are elements of the null space of the roof
wavefront sensor operators, i.e., phase elements that deliver measurements equal to
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zero. For the following investigations, we will consider the mathematical forward model
of the linearized roof sensor Rlin and analyze the null spaces of the corresponding
operators described by

N
(
Rlin

)
:= {Φ ∈ H11/6

(
R

2
)
| RlinΦ = 0}.

We study the response of the linearized roof sensor to a global piston mode shown in
Figure 5.1 left. Hence, we define

Φpiston(x, y) = c · XΩ(x, y),

where c ∈ R is a constant. Furthermore, we analyze how the sensor responses to
modes of order 1 called tip & tilt modes (see Figure 5.1 middle and right) represented
by

Φtip/tilt(x, y) = (ax+ by) · XΩ(x, y)
for a, b ∈ R.

Proposition 5.1. Constant functions c · XΩ with c ∈ R are elements of the null
space of the linearized roof sensor operators R{n,c,l},lin =

[
R{n,c,l},linx ,R{n,c,l},liny

]
with

R{n,c,l},linx defined in (5.2) and R{n,c,l},liny accordingly. Tip signals (cx · XΩ(x, y)) are
in the null space of R{n,c,l},liny and tilt signals (cy · XΩ(x, y)) are in the null space of
R{n,c,l},linx .
Proof. Global piston modes c · XΩ are in the null space of the roof sensor operator
because of(

R{n,c,l},linx Φpiston
)

(x, y) = XΩ(x, y) 1
π

∫
Ωy

[Φpiston(x′, y)− Φpiston(x, y)] k{n,c,l}(x′ − x)
x′ − x

dx′

= XΩ(x, y) 1
π

∫
Ωy

[c− c] k{n,c,l}(x′ − x)
x′ − x

dx′ = 0

and R{n,c,l},liny (x, y) respectively.

For exact investigations of tip & tilt modes, we split Φtip/tilt(x, y) into

Φtip(x, y) = ax · XΩ(x, y) and Φtilt(x, y) = by · XΩ(x, y).

Then, we consider(
R{n,c,l},linx Φtip

)
(x, y) = XΩ(x, y) 1

π

∫
Ωy

[Φtip(x′, y)− Φtip(x, y)]k{n,c,l}(x′ − x)
x′ − x

dx′

= XΩ(x, y) 1
π

∫
Ωy

[a (x′ − x)]k{n,c,l}(x′ − x)
x′ − x

dx′

= XΩ(x, y) 1
π

∫
Ωy

a · k{n,c,l}(x′ − x) dx′
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and (
R{n,c,l},liny Φtip

)
(x, y) = XΩ(x, y) 1

π

∫
Ωx

[Φtip(x, y′)− Φtip(x, y)]k{n,c,l}(y′ − y)
y′ − y

dy′

= 0

as well as(
R{n,c,l},linx Φtilt

)
(x, y) = XΩ(x, y) 1

π

∫
Ωy

[Φtilt(x′, y)− Φtilt(x, y)]k{n,c,l}(x′ − x)
x′ − x

dx′

= 0

and (
R{n,c,l},liny Φtilt

)
(x, y) = XΩ(x, y) 1

π

∫
Ωx

[Φtilt(x, y′)− Φtilt(x, y)]k{n,c,l}(y′ − y)
y′ − y

dy′

= XΩ(x, y) 1
π

∫
Ωx

[b (y′ − y)] k{n,c,l}(y′ − y)
y′ − y

dy′

= XΩ(x, y) 1
π

∫
Ωx

b · k{n,c,l}(y′ − y) dy′.

Altogether, we obtain that tip is in the null space of R{n,c,l},liny and tilt in the null
space of R{n,c,l},linx .

Figure 5.1: The figures indicate piston, tip and tilt mode (from left to right),
source [109].

If we further simplify the roof sensor model by excluding the second term in (5.2)
and consider the operators L{n,c,l} defined in (5.4), we note that these operators are
injective, i.e., N

(
L{n,c.l}

)
= {0}. This assertion follows from the injectivity of the

finite Hilbert transform shown in [57].

Note that the results of Proposition 5.1 are directly transferred to the non-linear roof
sensor operators R{n,c,l} introduced in Definition 3.4. As soon as we consider functions
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including various powers of x or y in Φtip/tilt, the corresponding measurements in x- or
y-direction are equal to zero as well. The fact that the roof sensor operators R{n,c,l},linx

and R{n,c,l},liny have different null spaces intensifies the requirement of an appropriate
combination of the two data sets sx and sy for reconstruction methods which are based
on the roof sensor model.

One idea to appropriately combine both measurements is to reconstruct independently
in both directions and average the reconstructions at the end as already considered
for the CGNE, SD, and linear LIPS above. However, it is not guaranteed that the
final (averaged) solution Φrec fulfills both equations (5.6)-(5.7). Another possibility is
two consider

[
Qx,Qy

]
as one single operator and a third one is to use a Kaczmarz

strategy [116, 143] which is computationally cheaper and for which it is guaranteed
that the equations (5.6)-(5.7) are fulfilled for the final solution. Kaczmarz methods in
general have been developed for solving linear systems of equations. We have decided
to implement Kaczmarz strategies for the pyramid sensor in combination with two of
the above discussed algorithms.

Landweber-Kaczmarz approach

In practice, the Landweber algorithm is used because it is simple and each iteration
is cheap. Though, the process usually requires a high number of iterations. Anyway,
we do not experience slow convergence for reconstruction from pyramid data due to
a close similarity between adjoint and inverse operators as investigated in [107] for
the non-modulated sensor, i.e., for the finite Hilbert transform operator. When using
proper basis functions for the representation of the incoming wavefront Φ and the
measurements s = [sx, sy] (as later introduced in (5.13)), the involved operators can be
precomputed offline. These facts make Landweber iteration coupled with a Kaczmarz
strategy interesting for wavefront reconstruction from pyramid sensor data. A general
convergence analysis of the linear Landweber-Kaczmarz method can be found in [126].

In the linear setting, the Landweber-Kaczmarz method for wavefront reconstruction
from pyramid wavefront sensor measurements is introduced in Algorithm 5.4. Now, the
two data sets are used alternating and measurements or reconstructions are combined
already during two successive Landweber iteration steps.

Steepest descent-Kaczmarz approach

The idea of modified steepest descent algorithms coupled with a Kaczmarz strategy is
comparable to the method described in [33] for non-linear problems. As in the previous
method, we cyclically consider each measurement equation (5.6) and (5.7).

Hence, for

Jx (Φ) := ||QxΦ− s||
2
L2
, Jy (Φ) :=

∣∣∣∣∣∣QyΦ− s
∣∣∣∣∣∣2
L2
,
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Algorithm 5.4 linear Kaczmarz-Landweber Iteration for Pyramid Sensors (KLIPS)
choose Φ0, set relaxation parameters β1, β2

for i = 1, . . . K do
Φi,0 = Φi−1

Φi,1 = Φi,0 + β1Q
∗
x (sx −QxΦi,0)

Φi,2 = Φi,1 + β2Q
∗
y

(
sy −QyΦi,1

)
Φi = Φi,2

endfor
Φrec = ΦK

we modify Algorithm 5.2 and obtain the Steepest Descent-Kaczmarz (SD-K) method
for wavefront reconstruction using pyramid sensors (Algorithm 5.5).
During an observation the reconstructions have to be repeated up to every 0.3 mil-
liseconds. Assuming that the incoming wavefront do not change much from one time
step to the next and, in particular, tip & tilt do not change significantly, another idea
(implemented in Algorithm 5.6) would be to reconstruct in x-direction for even time
steps t and in y-direction for the proximate odd time steps t + 1. The big advantage
of Algorithm 5.6 consists in the reduction of the computational demand by more than
50% compared to the normal SD approach.

The post loop step of Algorithm 5.1 - 5.3, i.e., the averaging of the two reconstructions
is not necessary for Algorithm 5.4 - 5.6 since we only obtain one reconstruction ΦK .
Please note that for the Kaczmarz-type methods it is merely necessary to choose one

Algorithm 5.5 Steepest Descent-Kaczmarz for pyramid sensors
choose Φ0

for i = 1, . . . K do
Φi−1,0 = Φi−1

di−1,1 = −J ′x (Φi−1,0)
τi−1,1 = min

t∈[0,∞)
Jx (Φi−1,0 + tdi−1,1)

Φi−1,1 = Φi−1,0 + τi−1,1di−1,1

di−1,2 = −J ′y (Φi−1,1)
τi−1,2 = min

t∈[0,∞)
Jy (Φi−1,1 + tdi−1,2)

Φi−1,2 = Φi−1,1 + τi−1,2di−1,2

Φi = Φi−1,2

endfor
Φrec = ΦK
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initial guess Φ0 instead of two as required for Algorithm 5.1 - 5.3.

Algorithm 5.6 modified Steepest Descent-Kaczmarz for pyramid sensors
if (t mod 2 = 0) do
apply Algorithm 5.2 in x-direction only

else if
apply Algorithm 5.2 in y-direction only

endif

Details on the numerical implementation

To specify the representation of the incoming phase Φ and the measurements s we
denote the number of subapertures by n. There are various possible representations of
the phase and the measurements, e.g., Zernike polynomials or bilinear spline functions.
We choose a representation that guarantees maximum computational efficiency, and
thus assume that the incoming phase and the measurements are a linear combination
of characteristic functions of the subapertures, i.e.,

Φ(x, y) =
n∑
i=1

φiXΩyi (x), sx(x, y) =
n∑
i=1

sx,iXΩyi (x), (5.13)

where (φi)1≤i≤n , (sx,i)1≤i≤n denote basis coefficients and Ωy
i = [xyi−1, x

y
i ] the i-th sub-

aperture of a row for fixed y. As the wavefront sensor provides two measurements (one
in x- and one in y-direction), for every single subaperture, the suggestion of represent-
ing the measurements via piecewise constant functions describing the subaperture grid
is reasonable. The involved operators are then calculated as, e.g.,

(QxΦ) (x, y) =−XΩ(x, y) 1
2π

∫
Ωy

[Φ(x′, y)− Φ(x, y)] k{n,c,l}(x′ − x)
x′ − x

dx′

=−XΩ(x, y) 1
2π

∫
Ωy

[
n∑
i=1

φiXΩyi
(x′)−

n∑
i=1

φiXΩyi
(x)
]
k{n,c,l}(x′ − x)

x′ − x
dx′

=−XΩ(x, y) 1
2π p.v.

 ∫
Ωy

n∑
i=1

φiXΩyi
(x′)k{n,c,l}(x′ − x)

x′ − x
dx′

−
∫

Ωy

n∑
i=1

φiXΩyi
(x)k{n,c,l}(x′ − x)

x′ − x
dx′
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=−XΩ(x, y) 1
2π

n∑
i=1

φi

p.v.

 ∫ xyi

xyi−1

k{n,c,l}(x′ − x)
x′ − x

dx′ −XΩyi
(x)

∫
Ωy

k{n,c,l}(x′ − x)
x′ − x

dx′


︸ ︷︷ ︸

=: α{n,c,l}i (x,y)

=−XΩ(x, y) 1
2π

n∑
i=1

φiα
{n,c,l}
i (x, y).

The functions α{n,c,l}i (x, y) are computed offline and do not influence the computa-
tional speed of the proposed methods. The implementation of all involved operators
is performed analogously when choosing the basis representation (5.13).

5.3 Numerical results
We test the quality of the reconstruction approaches by continuously correcting the
incoming wavefront in closed loop AO. In this setting, the wavefront sensor measures
the incoming phase after passing the deformable mirror, i.e., the sensor sees the differ-
ence between the incoming wavefront and the correction induced by the mirror. For
numerical simulations, we use the end-to-end simulation tool Octopus developed by
ESO [129, 130]. We test the performance of the proposed methods for an ELT-sized
telescope system. In particular, we consider the METIS instrument on the 39 m sized
ELT for non-modulated and modulated pyramid wavefront sensors. The system runs
at a frequency of 1 kHz for the non-modulated sensor and at a frequency of 500 Hz for
the modulated sensor. The mirror geometry in the simulations corresponds to the M4
geometry planned for the ELT, telescope spiders are not taken into account. For the
temporal control of the algorithms we use a simple integrator and optimize the gains
with a resolution of 0.1.
The quality results of the algorithms are expressed in terms of long-exposure Strehl
ratios at an observing wavelength of 2.2 µm (K-band). Note that according to the
specifications of the METIS instrument, K-band is not included in the science range.
Instead, observations are performed in L-band (at λ1 = 3.0 µm, λ2 = 3.7 µm), in
M-band (at λ = 4.7 µm) and in N-band (at λ = 10.0 µm). For analysis purposes,
however, we find it useful to have the output at a shorter wavelength as well. As such,
we use λ = 2.2 µm in the K-band where the imaging is performed.
In our numerical tests we evaluate the reconstruction quality in a range of photon flux
levels between 50 and 10000 photons per subaperture per frame for median atmospheric
conditions. The simulation parameters are summarized in Table 5.1. In order to speed
up convergence to the closed loop, in the first 13 time steps we apply the CuReD
reconstructor [179, 180], which corrects mainly for the low frequencies in the wavefront.
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Simulation parameters
telescope diameter 37 m
central obstruction 30%
science target on-axis (SCAO)
WFS PWFS
sensing band K (2.2 µm)
evaluation bands K (2.2 µm)

L (3.0, 3.7 µm)
M (4.7 µm)
N (10.0 µm)

modulation [0, 4] λ/D
controller integrator
atmospheric model von Karman
number of simulated layers 35
outer scale L0 25 m
atmosphere median
Fried radius r0 at λ = 500 nm 0.157 m
number of subapertures 74× 74
number of active subapertures [3912, 4128] out of 5476
frame rate [1000, 500] Hz
DM delay 1
photon flux [50, 100, 1000, 10000]
iterations per simulation 500

Table 5.1: Test case setting for numerical simulations using linear iterative reconstruc-
tion methods.

5.3.1 Optimal step size choice for SD iteration in the context
of WF reconstruction from pyramid data

Before we compare the reconstruction quality of all proposed methods, we investi-
gate the optimal step size choice for the steepest descent algorithm applied to WF
reconstruction. For that analysis we consider the METIS instrument on the ELT hav-
ing a pyramid sensor without modulation incorporated. The simulation parameters
are identical to those listed in Table 5.1. As photon flux, we use 10000 photons per
subaperture per frame. The reconstruction quality is evaluated after 500 time steps
using 5 SD-iterations for each reconstruction in order to find the optimal choice of the
step size. As listed in Table 5.2, best results are obtained for the SD iteration com-
bined with the classical steepest descent step size. The reason for the small number
of performed iterations is (amongst others) related to the roof sensor approximation
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for modeling a pyramid sensor and discussed below in more detail.

step size choice LE Strehl ratio
classical SD 0.8322
minimal gradient 0.8310
Barzilai-Borwein 1 0.8311
Barzilai-Borwein 2 0.8316
Cauchy-Barzilai-Borwein 1 0.8317

Table 5.2: SD-reconstruction (Algorithm 5.2) results for the non-modulated sensor in
the K-band after 500 time steps using different step sizes.

5.3.2 Simulated closed loop performance
Let us analyze the closed loop performance of the developed algorithms and compare
their reconstruction quality. Our reconstruction methods are all based on a simplifica-
tion of the full pyramid sensor model. As a consequence, after some iteration steps, the
reconstructions suffer from an approximation error and depart from the true solution
of the full pyramid sensor model although the residuals∣∣∣∣∣∣s− 1

2 RlinΦi

∣∣∣∣∣∣ (5.14)

with respect to the simplified model continue to scale down during the iterations. Due
to the fact that the full non-linear pyramid sensor model P consists of two terms
P = P lin + P rest, where the first term again is split into two terms P lin = Rlin + Slin

(see Section 3.2 - 3.4 for more details), a reduction of the roof sensor residual (5.14)
can imply an error increase of SlinΦ + P restΦ in the residual corresponding to the full
pyramid sensor model∣∣∣∣∣∣s− 1

2P Φi

∣∣∣∣∣∣ =
∣∣∣∣∣∣s− 1

2RlinΦi − 1
2

(
Slin + P rest

)
Φi

∣∣∣∣∣∣ .
Besides the approximation error, another error source, the data error, is present in the
reconstruction process. It is inevitable to search for an adequate stopping criterion
taking into account both the difference between the real pyramid operator P providing
the measurements s and the approximate operator Rlin, which builds the foundation
of the model-based reconstruction algorithms, as well as data errors. For choosing the
regularization parameter in the generally non-linear problem of wavefront reconstruc-
tion from pyramid data, we discuss the usage of Morozov’s discrepancy principle.
Assume that the pyramid sensor provides noisy data sδ fulfilling

∣∣∣∣∣∣s− sδ∣∣∣∣∣∣ < δ for some
noise level δ > 0. The iteration is terminated with stopping index k∗(δ, sδ) when for
the first time the residual is below τδ for some τ > 1, i.e.,∣∣∣∣∣∣sδ − 1

2RlinΦδ
i

∣∣∣∣∣∣ > τδ, 0 ≤ i < k∗ and
∣∣∣∣∣∣sδ − 1

2RlinΦδ
k∗

∣∣∣∣∣∣ ≤ τδ.
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The discrepancy principle combined with a criterion for controlling the approxima-
tion error can be transferred to the application of only a few CGNE- or SD-iterations
resulting in a very low value for k∗ as confirmed by a huge number of numerical sim-
ulations performed within this study. In particular, one iteration suffices to provide
high reconstruction quality when using a warm restart of the system. That is, in the
first time step, the initial guess is chosen as zero, i.e., Φ0,0 := 0, and at time step
t > 0 the initial value is set to the reconstructed phase of the previous step, i.e.,
Φt,0 := Φrec

t−1. By employing the reconstruction of the previous step as initial guess
Φ0 we significantly decrease the computational complexity since Algorithm 5.1 - 5.2
and 5.5 - 5.6 are scaled down to non-iterative gradient based methods by applying
only one corresponding iteration step. The warm restart technique improves the con-
vergence speed of the iterative solvers and additionally slightly increases the quality
performance. The suitable number of iterations is also depending on the number of
incident photons, since a high photon flux results in reduced data noise and vice versa.

In our applications a total number of K = 1 iterations turned out to be optimal with
respect to the reconstruction quality and the computational complexity of the methods.
Except for the Landweber type approaches (Algorithm 5.3 - 5.4), we use more than
one iteration, but already K = 5 Landweber steps combined with an adapted choice
of the relaxation parameter and the warm restart technique are sufficient to obtain
satisfying reconstruction quality.
In case of one CGNE- or SD-iteration the two algorithms coincide when using the
classical steepest descent step size (5.11). Additionally, the step sizes in the SD method
discussed in the previous Section do not differ for one SD-iterate except for the classical
SD step size and the MG step size. Hence, for the numerical simulations with results
provided in Table 5.3 and Table 5.4 we used the minimal gradient step size (5.12)
in the Algorithm 5.2 in order to have an additional comparison of step size choices
as well. Since Algorithm 5.6 has a reduced computational complexity compared to
Algorithm 5.5, we only consider the modified SD-Kaczmarz algorithm in our numerical
tests. As above, one SD-Kaczmarz iteration suffices as well.

Numerical tests suggest that for METIS an interpolation to a finer grid than given by
the subaperture spacing results in an increased reconstruction quality. In the XAO
case the corresponding improvement was less significant. This may be related to the
difference in subaperture sizes of both systems (21 cm in XAO versus 50 cm in METIS).

Corresponding results having a cold start (Φ0 = 0) for every time step t can be found
in Table 5.2 (giving the results for different step sizes) for Algorithm 5.2 utilizing a
pyramid sensor without modulation while results using the warm restart technique for
all presented algorithms are summarized in Table 5.3 for the non-modulated pyramid
sensor and in Table 5.4 for the modulated pyramid sensor. Hence, the warm restart
technique improves the reconstruction quality of the SD approach from an LE Strehl
ratio of 0.8322 having a cold start to 0.8412 with the warm restart.
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photon flux CGNE SD lin. LIPS lin. KLIPS mod. SD-K
50 0.8374 0.8376 0.8332 0.8371 0.8331
100 0.8407 0.8409 0.8384 0.8415 0.8393
1000 0.8414 0.8413 0.8395 0.8420 0.8412
10000 0.8415 0.8412 0.8396 0.8419 0.8413

Table 5.3: Long-exposure Strehl ratios in the K-band for a pyramid sensor without
modulation obtained with the presented linear algorithms after 500 closed loop simu-
lation steps. Best results are obtained for the CGNE approach (Algorithm 5.1), the
SD (Algorithm 5.2), and Landweber-Kaczmarz iteration (Algorithm 5.4).

In case of zero modulation, best reconstruction quality is obtained for the Landweber-
Kaczmarz approach using the two measurement sets alternating and for the gradient
based approaches (Algorithm 5.1 - 5.2) calculating two reconstructions and averaging
at the end. For the sensor having modulation 4 λ/D, surprisingly, the CGNE approach
even outperforms the Landweber-Kaczmarz algorithm except for the simulations with
50 photons per subapertures per frame. However, the differences in the results are
very small anyway. In addition to the K-band results shown in Table 5.3, we provide
the long-exposure Strehl ratios in other science bands as defined by the instrument
specifications. Table 5.5 shows the quality in the L-, M-, and N-bands in the high flux
case (10000 ph/subaperture/frame) for the non-modulated sensor obtained with the
Landweber-Kaczmarz algorithm.

photon flux CGNE SD lin. LIPS lin. KLIPS mod. SD-K
50 0.8432 0.8434 0.8427 0.8439 0.8340
100 0.8524 0.8520 0.8517 0.8510 0.8454
1000 0.8597 0.8579 0.8590 0.8562 0.8570
10000 0.8604 0.8581 0.8595 0.8577 0.8580

Table 5.4: Long-exposure Strehl ratios in the K-band for a pyramid sensor with mod-
ulation 4 λ/D obtained with the presented linear algorithms after 500 closed loop
simulation steps. Here, the CGNE approach (Algorithm 5.1) provides the highest
reconstruction quality in most of the cases.

The simulations for a modulated sensor whose results are presented in Table 5.4 were
performed with a frame rate of 500 Hz. In order to have a direct comparison of the
non-modulated and modulated sensor, we additionally run a simulation at a frame
rate of 1 kHz (instead of 500 Hz) using a pyramid sensor with modulation 4 λ/D. For
the modulated sensor in the high flux case with the CGNE method we obtain the LE
Strehl ratio of 0.8782 in the K-band after 500 time steps and for the non-modulated
sensor the LE Strehl ratio of 0.8415. This result fits well our previous experiences
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with other model-based reconstruction algorithms according to which the modulated
sensor provides a higher quality compared to the non-modulated one.

All in all, the developed reconstruction algorithms deliver comparable quality and
allow for robust and accurate wavefront reconstruction with low computational costs.

sensing wavelength LE Strehl
2.2 µm 0.8419
3.0 µm 0.9107
3.7 µm 0.9401
4.7 µm 0.9623
10.0 µm 0.9915

Table 5.5: Long-exposure Strehl ratios in L-, M-, and N-bands obtained for the non-
modulated pyramid sensor with the Landweber-Kaczmarz algorithm in the high flux
case (10000 ph/subaperture/frame) after 500 closed loop simulation steps.

5.3.3 Comparison to interaction-matrix-based approaches
Let us now compare the reconstruction quality of the proposed methods to those
nowadays primarily running on existing observing facilities, the interaction-matrix-
based methods considered more precisely in Chapter 7 and Chapter 8 of the Thesis.
Often, in practice and also in simulations, the non-modulated sensor being operated
with an interaction-matrix-based approach, is reported to be unstable, see, e.g, [86,
132]. One can, for instance, apply some tricks, like using a “wrong“ command matrix
derived for the modulated sensor, or heavily fine-tune the regularization parameters to
filter out the unstable modes in the correct interaction matrix (measured or computed
for the sensor with modulation 0). This has to be performed on the fly and is a very
time-consuming task.
There was a result published in [132] for the non-modulated sensor running in Oc-
topus with a modal MVM (cf Section 8.2.4) at 1 kHz frame rate. The achieved
quality in the K-band was reported to be 0.62 for the high flux case with 10000 pho-
tons/subaperture/frame. For comparison, the pyramid sensor with modulation 4 λ/D
was reported to provide in the same environment the LE Strehl ratio of around 0.80.
As reported in [102], another variant of MVM, the zonal minimum variance reconstruc-
tor (cf Section 8.2.4) in the YAO simulation tool [172], which is a zonal regularized
approach, achieves an LE Strehl of 0.89 in case of the modulated pyramid sensor (with
modulation 4) and high photon flux.

Comparing the performances of the described algorithms, we can draw the following
conclusions. For the pyramid sensor without modulation, our reconstruction algo-
rithms, that use the forward model of the sensor, allow not only to close the loop
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operation # of flops
loop QxΦx 2n3 − n2

sx −QxΦx n2

Q∗x (sx −QxΦx) 2n3 − n2

βQ∗x (sx −QxΦx) n2

Φx + βQ∗x (sx −QxΦx) n2

post loop step Φ = 1
2 (Φx + Φy) 2n2

Table 5.6: The number of floating point operations to be performed online in the linear
LIPS and KLIPS.

easily, but also to achieve a stable correction over time with a quality significantly
higher compared to, e.g., the modal MVM estimate in [132]. In case of the pyramid
sensor with the optimal amount of modulation, our algorithms achieve a reconstruc-
tion quality which is slightly below the best (known) result obtained with the zonal
MMSE variant of MVM.

5.4 Computational complexity
We define the computational complexity of the algorithm as a number of required
floating point operations (flops). Let n denote the number of subapertures in one
direction, then N = n2 indicates approximately the number of unknowns to be found.

5.4.1 Complexity of linear LIPS and KLIPS
We only consider the complexity of the operations that have to be performed online
and exclude the pre-calculations needed in the application of the operators Q and Q∗

from our considerations. The number of floating point operations for every step in
the Landweber iteration approach for wavefront reconstruction using pyramid sensors
(Algorithm 5.3 - 5.4) is provided in Table 5.6. The post loop step of the linear LIPS
consists of finding the average between the two resulting reconstructions, which re-
quires one summation and one division by a scalar. Altogether, this step is summed
up to 2n2 operations.

Because we perform the mentioned operations in x- and in y-direction, i.e., twice, for
K iterations we obtain the complexity

Clin.KLIPS(n;K) =
(
8n3 + 2n2

)
·K

for the linear Landweber-Kaczmarz approach (Algorithm 5.4) and

Clin.LIPS(n;K) =
(
8n3 + 2n2

)
·K + 2n2
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operation # of flops
loop J ′(Φx) 4n3 − n2

evaluation of τSD 2n3 + 3n2 + 1
Φx − τJ ′(Φx) 2n2

post loop step Φ = 1
2 (Φx + Φy) 2n2

Table 5.7: The number of floating point operations in the Steepest Descent and Steep-
est Descent-Kaczmarz for pyramid sensors.

for the application of the Landweber iteration (Algorithm 5.3) having the additional
step of averaging.

5.4.2 Complexity of SD and SD-Kaczmarz for pyramid sen-
sors

We again only consider the operations performed online. The complexity of one steep-
est descent iteration (Algorithm 5.2, Algorithm 5.5 and Algorithm 5.6) is indicated in
Table 5.7. In case of the classical steepest descent iteration (Algorithm 5.2) a subse-
quent averaging has to be performed, which costs additionally 2n2 flops. Therefore,
the number of floating point operations for the steepest descent-Kaczmarz approach
applied to pyramid sensors (Algorithm 5.5) is given by

CSD−K(n;K) =
(
12n3 + 8n2 + 2

)
·K,

for the modified Algorithm 5.6 by

Cmod.SD−K(n;K) =
(
6n3 + 4n2 + 1

)
·K,

and for the steepest descent approach (Algorithm 5.2) by

CSD(n;K) =
(
12n3 + 8n2 + 2

)
·K + 2n2,

where K indicates the number of steepest descent steps.

5.4.3 Complexity of CGNE for pyramid sensors
The CGNE method consists of three steps:

1. a pre-computation and initialization step which have to be done for both x- and
y-direction once,

2. the CG-loop for K iterations performed twice in x- and y-direction,

3. a post loop step in which we average the two obtained reconstructions.
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operation # of flops
init computation of dx,0 2n3

computation of sx,0 2n3 − n2

initialization of px,1 n2

loop computation of qx 2n3 − n2

computation of α 4n2 + 1
computation of Φx 2n2

computation of dx 2n2

computation of sx 2n3 − n2

computation of β 2n2 + 1
computation of px 2n2

post loop step Φ = 1
2 (Φx + Φy) 2n2

Table 5.8: The number of floating point operations in the CGNE algorithm for pyramid
sensors.

The number of floating point operation in the CGNE algorithm for pyramid sensors for
operations which are not pre-computed offline is indicated in Table 5.8. Summing up
the specified operations for both sx and sy data, we see that altogether the initialization
step consists of 8n3 flops, the loop of (8n3 + 20n2 + 4) ·K and the post loop step of
2n2 operations. Hence, the CGNE complexity for pyramid sensors sums up as

CCGNE(n;K) =
(
8n3 + 20n2 + 4

)
·K + 8n3 + 2n2.

However, since the CG method is known to require the fewest number of iterations,
K usually is smaller compared to, e.g., the Landweber iteration.

5.4.4 Comparison to MVM
The complexity of standard MVM methods scales as O(N2) = O(n4) in our notations.
In these studies, we calculate the reconstructions (mirror actuator commands) at the
corners of the subapertures (cf Fried geometry), and thus need to consider approxi-
mately n′ = n + 1 phase values. For, e.g., n = 200 subapertures, the complexity of
MVM is estimated as

CMVM(200) = 2014 ≈ 16 · 108 = 1600 · 106.

The computational load of the developed methods are estimated in Table 5.9. Here, we
assume that the mirror actuators are equidistantly spaced on a squared shape although
this is not employed in practice since not all actuators are actively controlled. However,
for a theoretical comparison of complexities such assumptions are still relevant. Note
that in principle CCGNE(n; 1) = CSD(n; 1) because the CGNE algorithm can already
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approach complexity flops METIS XAO XAO in %
MVM O

(
N2
)

CMVM (n) 30 · 106 1600 · 106 100 %
CGNE O

(
N3/2

)
CCGNE(n; 1) 6, 9 · 106 130, 9 · 106 8 %

SD O
(
N3/2

)
CSD(n; 1) 5, 1 · 106 97, 9 · 106 6 %

SD-K O
(
N3/2

)
CSD−K(n; 1) 5, 1 · 106 97, 8 · 106 6 %

modified SD-K O
(
N3/2

)
Cmod.SD−K(n; 1) 2, 6 · 106 48, 9 · 106 3 %

lin. LIPS O
(
N3/2

)
Clin.LIPS(n; 5) 16, 9 · 106 325, 3 · 106 20 %

lin. KLIPS O
(
N3/2

)
Clin.KLIPS(n; 5) 16, 3 · 106 325, 2 · 106 20 %

Table 5.9: The computational complexities of the linear iterative algorithms compared
to the implementation of an MVM method. Estimates of the number of floating point
operations necessary for the METIS instrument having a pyramid wavefront sensor
with 74 × 74 and for an XAO system with 200 × 200 subapertures are provided.
The last column demonstrates the computational effort of the presented algorithms as
percentage of the MVM effort for the XAO system.

be terminated after the calculation of Φ1. However, we consider one full CGNE step
in the Table.
As a remark, we mention that in our comparison we have omitted the additional com-
putational effort required in the presented model-based algorithms for the computation
of deformable mirror commands from the reconstructed wavefront shape. This step
can be represented as a bilinear interpolation from the n × n grid of subapertures to
the (n + 1) × (n + 1) grid of DM actuators, which requires 4(n + 1)2 floating point
operations to be performed. Also, we would like to mention that the time-saving fea-
tures of MVM approaches like parallelizability and pipelineability are valid for our
algorithms as well.

The developed algorithms allow to significantly reduce the numerical effort of the wave-
front reconstruction step in an AO loop compared to the computational load related
to the solvers based on matrix-vector multiplication. This is illustrated especially well
for the XAO system having a huge number of active actuators. The computational
effort of MVM-based wavefront estimators is extremely demanding in this case. In
contrast, the usage of analytically developed wavefront reconstructors allows to heav-
ily reduce the numerical effort of the AO loop. For instance as shown in Table 5.9, the
modified steepest descent algorithm reduces the computational load of the wavefront
reconstruction step in the XAO loop to approximately 3% of the MVM effort while
still providing high reconstruction quality.

5.5 Summary on linear iterative methods
This Chapter has been dedicated to the application of well-known iterative algorithms
for solving the Inverse Problem of wavefront reconstruction from pyramid wavefront
sensor data in the field of astronomical Adaptive Optics. From the performed end-
to-end numerical simulations we can draw the conclusion that all studied algorithms
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deliver very similar reconstruction quality. However, it is preferable to apply the Kacz-
marz versions of the algorithms or the CGNE approach, since they provide a slightly
better reconstruction quality, though, the difference in the achieved quality between
all the methods is minor. The best quality is obtained with the CGNE approach
(Algorithm 5.1) and with the Landweber-Kaczmarz iteration (Algorithm 5.4), which
at the same time is part of the slowest among the algorithms under comparison. If
one decides to go for speed at the cost of a negligible quality loss, one should choose
the modified steepest descent-Kaczmarz version combined with the classical step size
choice (Algorithm 5.6).

As shown by numerical results presented in this study, the proposed algorithms, which
are partially iterative methods, allow to keep the numerical effort of the wavefront re-
construction step in an AO loop low compared to the computational load of solvers
based on matrix-vector multiplication. This has an especially big impact for the con-
sidered XAO system having a huge number of active actuators. For instance, the
modified steepest descent algorithm reduces the computational load of the wavefront
reconstruction step in the XAO loop to approximately 3% of the MVM effort while
still providing high reconstruction quality.

Even when using simplifications of the pyramid sensor model, all proposed algorithms
provide stable reconstruction and (almost) reach the quality of interaction-matrix-
based approaches in which the full pyramid model is assumed. A big advantage of
the proposed iterative methods is the possibility to investigate the full pyramid sensor
model for future developments. Those adaptions may lead to high quality improve-
ments as additionally real life features such as telescope spiders or the low wind effect
can easier be incorporated in the approaches presented in this Chapter than for other
wavefront reconstructors as, e.g., the P-CuReD introduced in Chapter 7.

Finally, we would like to mention that investigations of the behavior of iterative algo-
rithms in the presence of wide support structures of the secondary mirror segmenting
the telescope pupil into disjoint parts as well as further quality evaluations to meet
specifications of the METIS instrument will be part of our further research. For in-
stance, one idea is to apply the iterative methods within the Split Approach presented
in Chapter 8 of the Thesis in order to overcome differential piston effects arising on
segmented pupils.
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Chapter 6

Non-linear wavefront
reconstruction using Landweber
and Landweber-Kaczmarz iteration

We introduce a new idea of non-linear wavefront reconstruction from pyramid wave-
front sensor data by applying the non-linear Landweber method or the non-linear
Landweber-Kaczmarz method as presented in [106]. Both iterative algorithms have
already been studied in-depth by the mathematical community with multiple applica-
tions in the field of Inverse Problems.

The non-linear problem of wavefront reconstruction is briefly recalled in Section 6.1.
We also review the mathematical models of the wavefront sensor used for the devel-
opment of the non-linear algorithms. In Section 6.2 we adapt the Landweber and
Landweber-Kaczmarz iteration to the problem of non-linear wavefront reconstruction
using pyramid sensors and introduce two new methods for wavefront reconstruction,
namely the non-linear Landweber Iteration for Pyramid Sensors (LIPS) and the non-
linear Kaczmarz-Landweber Iteration for Pyramid Sensors (KLIPS). The evaluation of
the Fréchet derivatives and the corresponding adjoints which are needed for the appli-
cation of the algorithms is done in Section 6.3. In Section 6.4 we mention some details
on the discretization of the problem and the computational complexity of the pro-
posed methods. The performance of the reconstructors using closed loop end-to-end
simulations is shown in Section 6.5.

From a mathematical perspective, the relation between the incoming, unknown wave-
front and the measured pyramid wavefront sensor response is non-linear. Basically, the
pyramid sensor signal can be modeled as the incoming wave convolved the PSF of the
sensor (cf (3.12)). Due to the sinusoidal nature of the measurements, the model has a
suitable linear approximation depending on the amplitude of the incoming wavefront
(cf Section 3.4). As later summarized in Table 7.1, almost all available wavefront re-
construction algorithms for pyramid sensors are based on a linearization of the model.
In closed loop AO, already corrected wavefronts are measured by the wavefront sensor.
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Thus, the existence of small incident wavefronts allows to assume a linear response
of the PWFS. However, for open loop data or larger wavefront errors, for instance
induced by non common path aberrations, this assumption is not fulfilled. Non com-
mon path errors appear in AO systems when the wavefront sensor does not belong to
the same light path as the science camera. Then, the AO system suffers from aber-
ration differences between the wavefront sensor and the science camera. Additionally,
optical elements may be incorporated in the non common path as, for example, in
the case of Multi Conjugate AO systems. In these cases, the assumption of small
residual wavefronts being measured by the wavefront sensor and so the linearity of the
pyramid sensor may be violated. Whenever the pyramid sensor is operated around a
non-zero setpoint, the reconstruction performance of linear methods may be affected.
Non-linear wavefront reconstructors are considered as one possibility to handle the
non-linearity effects of the pyramid sensor depending on the modulation amplitude
of the sensor or introduced by influences such as NCPAs. Other ideas to mitigate
the non-linearity induced sensitivity loss are measuring the non-linearity and taking it
into account in the wavefront reconstruction process. This is done by multiplying the
measurements with the retrieved non-linearity factor or so-called modal optical gain
compensation methods in which, depending on the statistics of the phase, global sys-
tem parameters and spatial frequencies, different gain values are applied to different
basis modes describing the wavefronts [50, 123, 124, 217]. Note that these adapted
reconstruction approaches are still linear. Furthermore, there exist wavefront estima-
tion approaches based on Newton’s method for non-linear optimization [78, 79, 125]
or a phase retrieval algorithm [38]. Important in this context are also the non-linear
models in [72, 73] describing the pyramid sensor in a generalized framework of Fourier
optics.

6.1 Non-linear problem of wavefront reconstruc-
tion using pyramid sensors

For wavefront reconstruction from pyramid sensor data the aim is to solve the non-
linear pyramid sensor operator equation

s = P Φ (6.1)

already introduced in (3.2) for pyramid wavefront sensor measurements s = [sx, sy],
the non-linear pyramid sensor operator P : D (P )→ L2 (R2) with D (P ) ⊆ H11/6 (R2)
and the unknown incoming wavefront Φ ∈ H11/6 (R2) [55, 60, 108, 147]. The norms in
the Hilbert spaces are considered to be the norms in L2 (R2) with

||·||L2(R2) = ||·||L2(Ω)

because of the compact support on the telescope aperture Ω of the involved phases
and sensor measurements (cf Section 3.2) and are generally denoted by ||·|| throughout
this Chapter.
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Since the unperturbed data s are almost never available in practice, we consider noisy
data sδ and assume ∣∣∣∣∣∣sδ − s∣∣∣∣∣∣ < δ

for some noise level δ > 0.

We start by recalling the pyramid and roof sensor operators and derive the necessary
theoretical principles for the application of the Landweber iteration. Due to the struc-
ture of the measurement equation later defined in (6.2), P {n,c} := [−1

2P {n,c}x , 1
2P {n,c}y ]

denote the pyramid sensor operators. The corresponding roof sensor operators are
denoted by R{n,c} := [−1

2R{n,c}x , 1
2R{n,c}y ]. Whenever we omit the superscripts {n, c} in

this Chapter, then the theory is applicable to both non-modulated and circular mod-
ulated pyramid sensors as well as the linear modulated roof wavefront sensor which
is not specifically reviewed. The domain D (P ) of the pyramid operator either de-
notes D (P x) or D (P y) respectively depending on the direction we are considering
the problem (for Landweber iteration) or D (P x)∩D (P y) if we consider the problem
as a system of two equations (in case of Landweber-Kaczmarz iteration).
In what follows we use the analytical pyramid wavefront sensor transmission mask
model derived in Section 3.2.1.

The pyramid wavefront sensor data in the non-linear transmission mask model are
represented as (cf Definition 3.2 and Theorem 3.3)

s{n,c}x (x, y) = −1
2

(
P {n,c}x Φ

)
(x, y),

s{n,c}y (x, y) = 1
2

(
P {n,c}y Φ

)
(x, y),

(6.2)

where the operators P {n,c}x : H11/6 (R2)→ L2 (R2) in x-direction are given by(
P
{n,c}
x Φ

)
(x, y) := XΩ(x, y)

1
π

∫
Ωy

sin [Φ(x′, y)− Φ(x, y)] · k{n,c}(x′ − x)
x′ − x

dx′

+XΩy (x)
1
π3 p.v.

∫
Ωy

∫
Ωx

∫
Ωx

sin [Φ(x′, y′)− Φ(x, y′′)] · l{n,c}(x′ − x, y′′ − y′)
(x′ − x)(y′ − y)(y′′ − y)

dy′′ dy′ dx′

and the operators P {n,c}y : H11/6 (R2)→ L2 (R2) in y-direction are given by(
P
{n,c}
y Φ

)
(x, y) := XΩ(x, y)

1
π

∫
Ωx

sin [Φ(x, y′)− Φ(x, y)] · k{n,c}(y′ − y)
y′ − y

dy′

+ XΩx (y)
1
π3 p.v.

∫
Ωy

∫
Ωx

∫
Ωy

sin [Φ(x′, y′)− Φ(x′′, y) · l{n,c}(x′′ − x′, y′ − y)
(x′ − x)(y′ − y)(x′′ − x)

dx′′ dy′ dx′.

The functions k{n,c} are defined by kn(x) := 1, kc(x) := J0(αλx), and the functions
l{n,c} by ln(x, y) := 1 and

lc(x, y) := 1
T

T/2∫
−T/2

cos[αλx sin(2πt/T )] cos[αλy cos(2πt/T )] dt.
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The function J0 denotes the zero-order Bessel function of the first kind, i.e.,

J0(x) = 1
π

π∫
0

cos(x sin t)dt = 1
π

π∫
0

cos(x cos t) dt.

The modulation parameter αλ is defined in (3.7).
The roof sensor operators consist of the first term of the pyramid sensor operators and
are used as a simplification of the full pyramid sensor model in the following.

The forward models of the non-modulated and modulated roof WFS in the transmis-
sion mask approach are represented by (cf Definition 3.4 and Theorem 3.5)

s{n,c}x (x, y) = −1
2

(
R{n,c}x Φ

)
(x, y),

s{n,c}y (x, y) = 1
2

(
R{n,c}y Φ

)
(x, y)

with operators R{n,c}x : H11/6 (R2) → L2 (R2), R{n,c}y : H11/6 (R2) → L2 (R2) defined
by

(
R{n,c}x Φ

)
(x, y) := XΩ(x, y) 1

π

∫
Ωy

sin[Φ(x′, y)− Φ(x, y)] · k{n,c}(x′ − x)
x′ − x

dx′,

(
R{n,c}y Φ

)
(x, y) := XΩ(x, y) 1

π

∫
Ωx

sin[Φ(x, y′)− Φ(x, y)] · k{n,c}(y′ − y)
y′ − y

dy′.

The operators P {n,c}x and P {n,c}y as well as R{n,c}x and R{n,c}y are constructed in the
same way. Please note that due to the similar structure of the operators, results for
one direction are immediately transferred to the second direction.

6.2 Non-linear Landweber iteration for solving the
wavefront reconstruction problem

Many existing wavefront reconstruction approaches assume a linear relation between
the unknown wavefront or mirror actuator commands and the given pyramid wave-
front sensor measurements. Such reconstruction methods for pyramid sensors are,
for instance, several variations of interaction-matrix-based approaches summarized in
[110], Fourier based methods [162, 194, 196], the fast P-CuReD algorithm [179, 198],
or the methods introduced in Chapter 4 - 5. In Chapter 5 we already applied Landwe-
ber iteration for wavefront reconstruction from pyramid sensor data but based on the
linearization of the model. Those results will serve as comparison to a potential im-
provement using non-linear methods as discussed in one of the subsequent Sections.
Additionally, for the linear LIPS and KLIPS, we reconstructed by only using the one-
term assumption of the roof sensor model, i.e., we excluded the second summands
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in (3.27) and considered variations of the finite Hilbert transform operators defined
in (3.28) in our numerical implementations. In the current approaches, we use the full
roof sensor model (3.27), and hence may achieve additional gains in reconstruction
performance.

In this Chapter, we propose two non-linear reconstruction algorithms for pyramid sen-
sor measurements. As non-linear reconstruction procedure, we use either Landweber
or Landweber-Kaczmarz iteration. We first review the general scheme of the Landwe-
ber algorithm originally proposed in the 1950s by Louis Landweber [127] for linear
problems and emphasize that the theory for solving non-linear, ill-posed problems us-
ing Landweber iteration considered in this Chapter is mainly referred to [97, 117].

The Landweber method is an iterative technique for minimizing the residual of the
quadratic functional

||P Φ− s||2

and is an appealing alternative to Tikhonov regularization. The idea of Landweber
iteration follows from the fixed point equation Φk+1 = F (Φk) with fixed point operator

F (Φ) := Φ + P ′ (Φ)∗ (s− P (Φ))

assuming that the pyramid sensor operator is differentiable. The iterative procedure
is described by

Φδ
k+1 = Φδ

k + P ′
(
Φδ
k

)∗ (
sδ − P

(
Φδ
k

))
k = 0, 1, 2, . . . (6.3)

with perturbed data sδ fulfilling
∣∣∣∣∣∣s− sδ∣∣∣∣∣∣ < δ and adjoint P ′ (·)∗ of the locally uni-

formly bounded Fréchet derivative P ′ (·). Even if sδ does not belong to the range of P ,
the Landweber iteration (6.3) is stable for a fixed number of iterations. The number
of iterations acts as regularization in case of noisy data sδ.
Since the pyramid sensor decouples the two directions, we will consider x- and y-
direction as independent Landweber iterations and are interested in a reconstruction
[Φx,Φy] for every direction. More precisely, we apply Landweber iteration to the data
set sx and obtain a reconstruction of the wavefront denoted by Φx, and we apply
Landweber iteration independently to the data set sy and obtain a second reconstruc-
tion Φy. The final reconstruction Φ is then calculated as the average of both directions,
Φ = 1

2 (Φx + Φy). Due to the symmetry of the problem, both directions can be handled
analogously, and hence are not examined individually here.
The iteration starts with initial guess Φ0 which may include a priori knowledge of the
exact solution Φ∗. We always set Φδ

0 = Φ0. In AO loops, reconstructions are needed
for a number of subsequent time steps and the reconstruction of the previous time
step usually is a good choice for the initial guess of the current time step. Hence, for
subsequent time steps, we consider a warm restart technique meaning that as initial
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guess at time step t+ 1, denoted by Φ0,t+1, we choose the final reconstruction Φrec,t of
the last time step t, i.e., Φ0,t+1 = Φrec,t.
For regularization, we use the discrepancy principle in case of noisy data: For an
appropriate choice of τ > 0 the iteration is stopped after k∗ = k∗(δ, sδ) iteration steps
fulfilling∣∣∣∣∣∣sδ − P

(
Φδ
k

)∣∣∣∣∣∣ > τδ, 0 ≤ k < k∗ and
∣∣∣∣∣∣sδ − P

(
Φδ
k∗

)∣∣∣∣∣∣ ≤ τδ. (6.4)

For non-linear Inverse Problems, iteration procedures as, e.g., (6.3) will in general
not converge globally to a solution of the non-linear operator equation (6.1). The
convergence theory is based on the assumption that the fixed point operator F is a
nonexpansive operator, i.e.,∣∣∣∣∣∣F (Φ)− F

(
Φ̃
)∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣Φ− Φ̃

∣∣∣∣∣∣ , Φ, Φ̃ ∈ D (F ) .

Iterative methods for approximating fixed points of nonexpansive operators have been
considered, for instance, in [8, 10, 27, 94]. As in many applications, it is difficult to
verify analytically whether the fixed point operator F is nonexpansive for the pyramid
sensor. For that reason, the nonexpansivity of the fixed point operator is often replaced
by properties that guarantee at least the local convergence of the iteration method and
are easier to check. To obtain local convergence we assume the pyramid sensor operator
equation (6.1) to be scaled according to

||P ′ (Φ)|| ≤ 1, Φ ∈ B2ρ (Φ0) ⊂ D (P ) (6.5)

for a ball B2ρ (Φ0) of radius 2ρ around the initial guess Φ0.
The second condition needed to ensure local convergence in Bρ (Φ0) to a solution
of (6.1) (provided that the equation is solvable in Bρ (Φ0)) reads as∣∣∣∣∣∣P (Φ)− P

(
Φ̃
)
− P ′ (Φ)

(
Φ− Φ̃

)∣∣∣∣∣∣ ≤ η
∣∣∣∣∣∣P (Φ)− P

(
Φ̃
)∣∣∣∣∣∣ (6.6)

for η < 1
2 ,Φ, Φ̃ ∈ B2ρ (Φ0) ⊂ D (P ). Both conditions guarantee that the Landweber

iteration is well-defined since all iterates Φδ
k, 0 ≤ k ≤ k∗ remain elements of D (P ) if

we employ the discrepancy principle.

Under the above mentioned conditions (6.5)-(6.6) and the discrepancy principle (6.4)
we obtain the following convergence results.

Theorem 6.1 ([117], Theorem 2.4 & Theorem 2.6). If we assume that (6.1) is solvable
in Bρ (Φ0) and that the conditions (6.5)-(6.6) hold, the non-linear Landweber iteration
converges to a solution of P Φ = s in case of exact data s.
If k∗

(
δ, sδ

)
defines a stopping index according to the discrepancy principle (6.4) for

τ > 2 1 + η

1− 2η > 2 (6.7)
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with η as in (6.6), the Landweber iterates xδk∗ converge to a solution of the Inverse
Problem (6.1).
If N

(
P ′
(
Φ†
))
⊂ N (P ′ (Φ)) for all Φ ∈ Bρ

(
Φ†
)
, we obtain convergence of Φk and,

respectively, of Φδ
k∗ to the Φ0-minimum-norm solution Φ† as k →∞ and δ → 0.

In order to ensure condition (6.5) we introduce a relaxation parameter ω, which is
chosen such that

ω
∣∣∣∣∣∣P ′ (Φ†)∣∣∣∣∣∣2 ≤ 1, (6.8)

and consider the iteration scheme

Φδ
k+1 = Φδ

k + ωP ′
(
Φδ
k

)∗ (
sδ − P

(
Φδ
k

))
k = 0, 1, 2, . . . (6.9)

as a modification of (6.3). Note that from Eq. (6.8) it follows that the relaxation
parameter ω is depending on the modulation amplitude of the pyramid wavefront
sensor. On the one hand one can choose ω small enough such that condition (6.8)
is always fulfilled, on the other hand such a choice will lead to a slow convergence.
Hence, the greatest possible value of ω is preferable in order to obtain best convergence
results.

6.2.1 Non-linear Landweber algorithm applied to pyramid
sensors

For Algorithm 6.1, named non-linear Landweber Iteration for Pyramid Sensors, we
apply non-linear Landweber iteration in x-direction and a second one independently
in y-direction (combined with a warm restart of the system). Thus, we obtain two re-
constructions Φ = [Φx,Φy] of the incoming phase and average them at the end. As we
observed in numerical simulations, the reconstruction quality exhibits most improve-
ments in the first few Landweber iterations and little in subsequent iterations, we fix
the number of iterations K in advance instead of using the discrepancy principle (6.4)
in order to reduce the computational load of the method.

Algorithm 6.1 non-linear Landweber Iteration for Pyramid Sensors
choose initial guess ΦK,0, set relaxation parameter ω
for t = 1, . . . T do

Φ0,t = ΦK,t−1

for i = 1, . . . K do
Φi,t = Φi−1,t + ωP ′ (Φi−1,t)∗ (st − P (Φi−1,t))

endfor
endfor
ΦK,T = (Φx,K,T + Φy,K,T ) /2
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6.2.2 Non-linear Landweber-Kaczmarz algorithm applied to
pyramid sensors

The structure of the operator equation (6.2), consisting of two equations (one in x-
and one in y-direction), allows to consider Kaczmarz strategies for wavefront recon-
struction from pyramid sensor data. Advantages of Kaczmarz loops for wavefront
reconstruction have already been analyzed in Section 5.2.4. In contrast to the two
reconstructions [Φx,Φy], one for each direction, we now only obtain one reconstruction
for both directions, again denoted by Φ.
The principal idea of Kaczmarz’s method [11, 137, 138, 140, 144] can be used in
combination with any iterative procedure. In image reconstruction, the method, which
is also known as algebraic reconstruction technique (ART), was used in [100] for the
first time.

The non-linear Kaczmarz-Landweber Iteration for Pyramid Sensors (Algorithm 6.2)
applies a Kaczmarz method in combination with non-linear Landweber iteration (and
the warm restart technique) to the problem of wavefront reconstruction from pyramid
sensor data.

Algorithm 6.2 non-linear Kaczmarz-Landweber Iteration for Pyramid Sensors
choose initial guess ΦK,0, set relaxation parameter ωx, ωy
for t = 1, . . . T do

Φ0,t = ΦK,t−1

for i = 1, . . . K do
Φi,t,1 = Φi−1,t + ωxP

′
x (Φi−1,t)∗ (sx,t − P x (Φi−1,t))

Φi,t,2 = Φi,t,1 + ωyP
′
y (Φi,t,1)∗ (sy,t − P y (Φi,t,1))

Φi,t = Φi,t,2

endfor
endfor

Instead of averaging the reconstructions in the last step as in the previously described
Landweber Iteration for Pyramid Sensors, we now apply the Landweber iteration steps
cyclically. For convergence and stability proofs of this method [33, 126], one basically
has to enforce the same conditions on every involved operator as for Landweber itera-
tion. Since for the LIPS we have already considered the two directions as completely
independent Landweber iterations, no further conditions necessary for the convergence
and stability of the KLIPS have to be shown. As for the LIPS, an appealing alterna-
tive to the discrepancy principle in AO loops for pyramid sensors is to fix the number
of iterates in advance in order to avoid time-consuming computations which do not
deliver high quality improvements. In case we want to use the discrepancy principle
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we modify (6.9) by

Φδ
k+1 = Φδ

k + σj,kωjP
′
j

(
Φδ
k

)∗ (
sδj − P j

(
Φδ
k

))
k = 0, 1, 2, . . .

and use

σj,k :=
1, if τδ <

∣∣∣∣∣∣sδj − P j

(
Φδ
k

)∣∣∣∣∣∣ ,
0, else,

for j = x, y indicating the direction, k denoting the current iteration step and τ chosen
according to (6.7). The iteration procedure is stopped in case of a stagnation over one
full cycle of iterations.
Note that both given algorithms have the warm restart technique incorporated but
can also be used without a warm restart.

6.3 Fréchet derivatives and corresponding adjoint
operators of the roof sensor model

For the application of the algorithms LIPS and KLIPS proposed above, we need to
calculate the Fréchet derivatives and the corresponding adjoint operators. At this
point, we can either use the full pyramid sensor model or the roof sensor as a simpli-
fication. Here, we consider the latter, i.e., we plug in the operators R{n,c} introduced
in (3.17)-(3.18) instead of the operator P in (6.3) for the reconstruction, but still use
the full pyramid wavefront sensor data s.
For the derivation of the adjoint operators we utilize the inner product in L2 (R2).

Proposition 6.2. The Fréchet derivatives
(
R{n,c}

)′
(Φ) ∈ L

(
H11/6,L2

)
of the roof

sensor operators R{n,c} at Φ ∈ D
(
R{n,c}

)
are given by

((
R
{n,c}
x

)′
(Φ) ψ

)
(x, y) = XΩ (x, y)

1
π

∫
Ωy

cos [Φ(x′, y)− Φ(x, y)] · k{n,c} (x′ − x) [ψ(x′, y)− ψ(x, y)]
x′ − x

dx′

and ((
R
{n,c}
y

)′
(Φ) ψ

)
(x, y) = XΩ (x, y)

1
π

∫
Ωx

cos [Φ(x, y′)− Φ(x, y)] · k{n,c} (y′ − y) [ψ(x, y′)− ψ(x, y)]
y′ − y

dy′.

Proof. The Fréchet derivatives of the roof sensor operators were already introduced in
Theorem 3.10 and Theorem 3.11.

The calculation of the adjoint operators depends on the underlying Hilbert spaces and
the accordant inner product. As we consider linear and continuous Fréchet derivatives(
R{n,c}x

)′
(Φ) : H11/6 → L2, the corresponding adjoints map from L2 into H11/6. In
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order to calculate the adjoints of the operators defined from H11/6 into L2, we consider
the embedding operator introduced in (3.30) as

is : H11/6 → L2

and derive the corresponding adjoint operators
((

R{n,c}x

)′
(Φ)

)∗
: L2 → H11/6 at Φ

according to [169] by
((

R{n,c}x

)′
(Φ)

)∗
= i∗s

((
R̃
{n,c}
x

)′
(Φ)

)∗

for
((

R̃
{n,c}
x

)′
(Φ)

)∗
: L2 → L2. Hence, it is sufficient to derive the adjoint operators((

R̃
{n,c}
x

)′
(Φ)

)∗
with respect to the inner product in L2 (R2). For simplicity of no-

tation, we use
((

R{n,c}x

)′
(Φ)

)∗
for

((
R̃
{n,c}
x

)′
(Φ)

)∗
in the following. Details on the

implementation of the above considerations can be found in [169].

Proposition 6.3. The adjoint operators
((

R{n,c}
)′

(Φ)
)∗

: L2 (R2)→ L2 (R2) of the
roof sensor’s Fréchet derivatives at Φ are represented by
((

R
{n,c}
x

)′
(Φ)
)∗

ψ (x, y) = −XΩ (x, y)
1
π

∫
Ωy

cos [Φ(x′, y)− Φ(x, y)] · k{n,c} (x′ − x) [ψ(x′, y) + ψ(x, y)]
x′ − x

dx′ (6.10)

and((
R
{n,c}
y

)′
(Φ)
)∗

ψ (x, y) = −XΩ (x, y)
1
π

∫
Ωx

cos [Φ(x, y′)− Φ(x, y)] · k{n,c} (y′ − y) [ψ(x, y′) + ψ(x, y)]
y′ − y

dy′. (6.11)

Proof. Since the proof for the operator in y-direction is analogous to x-direction, we
only perform the calculation for

((
R{n,c}x

)′
(Φ)

)∗
. For the evaluation of the adjoints,

we divide the Fréchet derivatives into two parts
(
R{n,c}x

)′
(Φ) =

(
T
{n,c}
1 (Φ)

)
−
(
T
{n,c}
2 (Φ)

)
with (

T
{n,c}
1 (Φ)

)
ψ (x, y) := XΩ (x, y) 1

π

∫
Ωy

cos [Φ(x′, y)− Φ(x, y)] · k{n,c} (x′ − x)ψ(x′, y)
x′ − x

dx′,

(
T
{n,c}
2 (Φ)

)
ψ (x, y) := XΩ (x, y) 1

π

∫
Ωy

cos [Φ(x′, y)− Φ(x, y)] · k{n,c} (x′ − x)ψ(x, y)
x′ − x

dx′.
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For any ψ, ϕ ∈ L2 (R2) we consider

〈(
T
{n,c}
1 (Φ)

)
ψ,ϕ

〉
L2(R2)

=
∫
R

∫
R

XΩ (x, y)

 1
π

∫
Ωy

cos [Φ(x′, y)− Φ(x, y)] · k{n,c} (x′ − x)ψ(x′, y)
x′ − x

dx′


· ϕ (x, y) dy dx

=
∫
Ωy

∫
Ωx

ψ
(
x′, y
) 1
π

∫
Ωy

cos [Φ(x′, y)− Φ(x, y)] · k{n,c} (x′ − x)ϕ(x, y)
x′ − x

dx dy dx′

=
∫
Ωy

∫
Ωx

ψ (x, y)
1
π

∫
Ωy

cos [Φ(x, y)− Φ(x′, y)] · k{n,c} (x− x′)ϕ(x′, y)
x− x′

dx′ dy dx

= −
∫
R

∫
R

ψ (x, y)

· XΩ (x, y)

 1
π

∫
Ωy

cos [Φ(x′, y)− Φ(x, y)] · k{n,c} (x′ − x)ϕ(x′, y)
x′ − x

dx′

 dy dx

=
〈
ψ,

(
T
{n,c}
1 (Φ)

)∗
ϕ

〉
L2(R2)

with
((

T
{n,c}
1 (Φ)

)∗
ϕ
)

(x, y) = −XΩ (x, y) 1
π

∫
Ωy

cos [Φ(x′, y)− Φ(x, y)] · k{n,c} (x′ − x)ϕ(x′, y)
x′ − x

dx′

using the fact that k{n,c} and cosine are even functions. The adjoints of the second
part are derived by

〈(
T
{n,c}
2 (Φ)

)
ψ,ϕ

〉
L2(R2)

=
∫
R

∫
R

XΩ (x, y)

 1
π

∫
Ωy

cos [Φ(x′, y)− Φ(x, y)] · k{n,c} (x′ − x)ψ(x, y)
x′ − x

dx′


· ϕ (x, y) dy dx

=
∫
R

∫
R

ψ (x, y)

· XΩ (x, y)

 1
π

∫
Ωy

cos [Φ(x′, y)− Φ(x, y)] · k{n,c} (x′ − x)ϕ(x, y)
x′ − x

dx′

 dy dx

=
〈
ψ,

(
T
{n,c}
2 (Φ)

)∗
ϕ

〉
L2(R2)

,

which results in
((

T
{n,c}
2 (Φ)

)∗
ϕ
)

(x, y) = XΩ (x, y) 1
π

∫
Ωy

cos [Φ(x′, y)− Φ(x, y)] · k{n,c} (x′ − x)ϕ(x, y)
x′ − x

dx′.
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Hence, the adjoints of the roof sensor Fréchet derivatives are given by((
R
{n,c}
x

)′
(Φ)
)∗

ψ (x, y) =
((

T
{n,c}
1 (Φ)

)∗
ψ

)
(x, y)−

((
T
{n,c}
2 (Φ)

)∗
ψ

)
(x, y)

= −XΩ (x, y)
1
π

∫
Ωy

cos [Φ(x′, y)− Φ(x, y)] · k{n,c} (x′ − x) [ψ(x′, y) + ψ(x, y)]
x′ − x

dx′.

6.4 Numerical implementation and complexity
In this Section, we summarize some numerical aspects as well as the computational
complexities of the proposed methods. First, we choose an adequate representation of
the incoming wavefront and the measurements for an n×n pyramid sensor. We assume
the two dimensional wavefront to be given as linear combination of characteristic
functions XΩij (x, y) of the subapertures (Ωij)ni,j=1. For the annular telescope aperture
Ω = Ωy × Ωx, the disjoint areas Ωij are chosen such that

Ω =
n⋃

i,j=1
Ωij and Ωij ∩ Ωml = ∅ for i 6= m ∧ j 6= l (6.12)

as well as
ΩL =

n⋃
i=1

ΩiL,

i.e., the term ΩL indicates the row of the symmetric telescope pupil Ω located at y-
position L. In order to describe an annular telescope aperture instead of a squared
one, we assign all areas Ωij being located outside the annular aperture to the empty
set in (6.12) just for simplicity of notation. In reality, we have different numbers of
subapertures in every row and column of the aperture. For the numerical implemen-
tation, we only consider those subapertures being located on the aperture to save
computation time. The incoming wavefront is represented by

Φ (x, y) =
n∑

i,j=1
ΦijXΩij (x, y) (6.13)

with coefficients Φij ∈ R, 1 ≤ i, j ≤ n.
The pyramid sensor delivers data on every subaperture – more precisely, one measure-
ment in x-direction and one measurement in y-direction for every subaperture. For
these we choose the same representation as for the incoming phase, i.e.,

s (x, y) =
n∑

i,j=1
sijXΩij (x, y) , (6.14)

where sij ∈ R, 1 ≤ i, j ≤ n denotes the coefficients for the measurements s = sx or
s = sy respectively. The points (xM , yL) where data are assumed to be given can, for
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instance, be chosen as the middle points of every subaperture of the symmetric pupil,
i.e.,

xM = −D − d2 +M · d, yL = −D − d2 + L · d for M,L = 1, . . . , n.

Here, d = D/n again denotes the subaperture size for a primary mirror diameter D.
Proposition 6.4. Using the representation (6.13) for the incoming phase Φ and the
direction ψ, the evaluation of the operators R{n,c} and

((
R{n,c}

)′
(Φ)

)∗
defined accord-

ing to (3.17)-(3.18) and (6.10)-(6.11) in the middle point (xM , yL) of the subaperture
ΩML ⊂ Ω for 1 ≤M,L ≤ n can be represented by(

R{n,c}x Φ
)
M,L

= 1
π

n∑
i=1
i 6=M

sin [ΦiL − ΦML]α{n,c}iL (xM)

and (((
R{n,c}x

)′
(Φ)

)∗
ψ
)
ML

= − 1
π

n∑
i=1

cos [ΦiL − ΦML] [ψiL + ψML]α{n,c}iL (xM)

with

α
{n,c}
iL (xM) :=



∫
ΩiL

k{n,c}(x′ − xM)
x′ − xM

dx′, for i 6= M,

p.v.
∫

ΩML

k{n,c}(x′ − xM)
x′ − xM

dx′, for i = M.

(6.15)

Proof. Utilizing the representation (6.13) we obtain(
R{n,c}x Φ

)
(x, y) = XΩ(x, y) 1

π

∫
Ωy

sin[Φ(x′, y)− Φ(x, y)] · k{n,c}(x′ − x)
x′ − x

dx′

= XΩ(x, y) 1
π

∫
Ωy

sin[
n∑

i,j=1
ΦijXΩij

(x′, y)−
n∑

i,j=1
ΦijXΩij

(x, y)] · k{n,c}(x′ − x)

x′ − x
dx′

= XΩ(x, y) 1
π

∫
Ωy

sin[
n∑

i,j=1
ΦijXΩij

(x′, y)− ΦijXΩij
(x, y)] · k{n,c}(x′ − x)

x′ − x
dx′.

The application of the non-linear roof sensor operator being evaluated at a point
(xM , yL) ∈ ΩML ⊂ Ω is represented by

(
R
{n,c}
x Φ

)
(xM , yL) = XΩ(xM , yL)

1
π

∫
ΩL

sin[
n∑

i,j=1
ΦijXΩij

(x′, yL)− ΦijXΩij
(xM , yL)] · k{n,c}(x′ − xM )

x′ − xM
dx′

=
1
π

∫
ΩL

sin[
n∑
i=1

ΦiLXΩiL
(x′)− ΦML] · k{n,c}(x′ − xM )

x′ − xM
dx′
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for M,L ∈ N, 1 ≤ M,L ≤ n. As the subapertures are disjoint, these considerations
result in

(
R{n,c}x Φ

)
M,L

= 1
π

∫
ΩL

sin[
n∑
i=1

ΦiLXΩiL(x′)− ΦML] · k{n,c}(x′ − xM)

x′ − xM
dx′

= 1
π

∫
Ω1L

sin[
n∑
i=1

ΦiLXΩiL(x′)− ΦML] · k{n,c}(x′ − xM)

x′ − xM
dx′

+ 1
π

∫
Ω2L

sin[
n∑
i=1

ΦiLXΩiL(x′)− ΦML] · k{n,c}(x′ − xM)

x′ − xM
dx′ + . . .

+ 1
π

∫
ΩnL

sin[
n∑
i=1

ΦiLXΩiL(x′)− ΦML] · k{n,c}(x′ − xM)

x′ − xM
dx′

= 1
π

∫
Ω1L

sin[Φ1L − ΦML] · k{n,c}(x′ − xM)
x′ − xM

dx′

+ 1
π

∫
Ω2L

sin[Φ2L − ΦML] · k{n,c}(x′ − xM)
x′ − xM

dx′ + . . .

+ 1
π

∫
ΩnL

sin[ΦnL − ΦML] · k{n,c}(x′ − xM)
x′ − xM

dx′

= 1
π

n∑
i=1
i 6=M

sin [ΦiL − ΦML]
∫

ΩiL

k{n,c}(x′ − xM)
x′ − xM

dx′

= 1
π

n∑
i=1
i 6=M

sin [ΦiL − ΦML]α{n,c}iL (xM) .

Analogously, for the adjoints of the Fréchet derivatives using the representation in (6.13)
for both Φ and Ψ, we obtain((

R{n,c}x

)′
(Φ)
)∗

ψ (xM , yL) = −XΩ(xM , yL) 1
π

∫
ΩL

cos [Φ(x′, yL)− Φ(xM , yL)] · k{n,c} (x′ − xM )
x′ − xM

· [ψ(x′, yL) + ψ(xM , yL)] dx′

= − 1
π

∫
ΩL

cos [
n∑

i,j=1
ΦijXΩij (x′, yL)− ΦijXΩij (xM , yL)]

x′ − xM

· k{n,c} (x′ − xM )

 n∑
k,l=1

ψklXΩkl
(x′, yL) + ψklXΩkl

(xM , yL)

 dx′
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= − 1
π

∫
ΩL

cos [
n∑
i=1

ΦiLXΩiL
(x′)− ΦML] · k{n,c} (x′ − xM )

x′ − xM

·

[
n∑
k=1

ψkLXΩkL
(x′) + ψML

]
dx′.

For disjoint subapertures Ωij this results in

(((
R{n,c}x

)′
(Φ)
)∗

ψ

)
ML

= − 1
π

∫
ΩL

cos [
n∑
i=1

ΦiLXΩiL
(x′)− ΦML] · k{n,c} (x′ − xM )

x′ − xM

·

[
n∑
k=1

ψkLXΩkL
(x′) + ψML

]
dx′

= − 1
π

n∑
i=1

cos [ΦiL − ΦML] [ψiL + ψML] p.v.
∫

ΩiL

k{n,c} (x′ − xM )
x′ − xM

dx′

= − 1
π

n∑
i=1

cos [ΦiL − ΦML] [ψiL + ψML]α{n,c}iL (xM )

with functions α{n,c}iL defined in (6.15).

We precompute the functions α{n,c}iL offline which significantly reduces the computa-
tional load of the algorithms. Please note that the principal value meaning only has
to be used when computing the function values α{n,c}ML (xM).

6.4.1 Computational complexity
For the evaluation of the numerical effort of the non-linear Landweber and Landweber-
Kaczmarz iteration for pyramid sensors we only consider the complexity of the opera-
tions that have to be performed online. We exclude the pre-calculations α{n,c} in (6.15)
needed for the application of the operators P and (P ′)∗ from our considerations. As
before, n indicates the number of subapertures in one direction. The number of ac-
tive subapertures N ∼ n2 denotes the number of unknowns to be found. Please note
that the proposed algorithms provide the reconstructed wavefront. An additional step
of transforming the reconstructed wavefront into mirror actuator commands must be
applied at the end (cf Section 8.2.1 - 8.2.2). The effort of this projection step is not
considered in the following.
An overview of the number of floating point operations for both algorithms is provided
in Table 6.1. The post loop step necessary in case of the LIPS consists of finding the
average of the two resulting reconstructions.

Since for both algorithms we perform the mentioned operations twice (in x- and in
y-direction), for K iterations we end up with

Cnonlin.LIPS(n;K) =
(
8n3 + 10n2

)
·K + 2n2 flops
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operation # of flops
loop P xΦx 2n3

sx − P xΦx n2

P ′x (Φx)∗ (sx − P xΦx) 2n3 + 2n2

ωP ′x (Φx)∗ (sx − P xΦx) n2

Φx + ωP ′x (Φ)∗ (sx − P xΦx) n2

post loop step Φ = 1
2 (Φx + Φy) 2n2

Table 6.1: The number of floating point operations to be performed online in the
non-linear Landweber and Landweber-Kaczmarz method. The post loop step is only
necessary for the LIPS and omitted for the KLIPS.

for the application of the Landweber iteration (Algorithm 6.1) having the additional
step of averaging and

Cnonlin.KLIPS(n;K) =
(
8n3 + 10n2

)
·K flops

for the non-linear Landweber-Kaczmarz approach (Algorithm 6.2). Thus, both algo-
rithms have a computational effort of O

(
N3/2

)
.

6.5 End-to-end simulation results
To analyze the performance quality of the proposed non-linear algorithms we simulate
an instance of the ELT. We evaluate the reconstruction quality in a closed loop setting
and compare the results with those of selected linear wavefront reconstruction algo-
rithms. The presented results correspond to the same METIS-like case as in Chapter 5
for reasons of a direct comparison of the non-linear methods to linear LIPS and KLIPS.
The simulation parameters are chosen such that they match those in Table 5.1.

Numerical tests are performed for a range of photon fluxes between 50 and 10000
photons per subapertures per frame. We tuned the relaxation parameter ω in (6.9)
adapted to the atmospheric parameters and the modulation amplitude of the pyramid
sensor with a resolution of 0.1 and fixed it for all variations of photon fluxes. A
simple integrator is used for the temporal control of the system. The gain is optimized
manually and for the non-modulated sensor the same for all test cases, which underlines
the stability of the algorithms with respect to parameter tuning. For the modulated
sensor, the gain was adjusted in the simulations with 50 and 100 ph/subap/frame. We
found that it is advantageous to have a frequency dependent loop gain correcting with
main emphasis on low-order modes at the beginning of a closed loop simulation.
The number of Landweber or Landweber-Kaczmarz iterations is limited to 5. This
allows for a reduction of the computational load at the expense of loosing the rather
minor quality improvements delivered by further iterations. For varying atmospheric
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Figure 6.1: Warm restart effect for the non-modulated sensor, source [106]. Without
using the warm restart technique (dotted line) the reconstructor suffers from slower
convergence compared to the method with a warm restart (solid line). The results
correspond to the non-linear LIPS approach for 10000 ph/subap/frame.

photon flux non-lin. LIPS non-lin. KLIPS lin. LIPS lin. KLIPS
50 0.8520 0.8517 0.8332 0.8371
100 0.8534 0.8534 0.8384 0.8415
1000 0.8530 0.8531 0.8395 0.8420
10000 0.8529 0.8530 0.8396 0.8419

Table 6.2: Long-exposure Strehl ratios in the K-band for a pyramid sensor without
modulation obtained with the non-linear Landweber method (Algorithm 6.1) and the
non-linear Landweber-Kaczmarz iteration (Algorithm 6.2) after 500 closed loop sim-
ulation steps. The simulation results listed for the linear LIPS (Algorithm 5.3) and
the linear KLIPS (Algorithm 5.4) correspond to the LE Strehl ratios presented in
Chapter 5.

parameters a different preselection of K may be adequate. As already discussed, we
employ the warm restart technique. The initial guess for the first time step is chosen as
zero. Then, for time steps t > 0 the initial value is assigned the reconstruction of the
last step. Omitting the warm restart but performing the same number of iterations per
time step, we observe that the convergence is severely hampered as shown in Figure 6.1
for the non-modulated sensor. However, the warm restart technique was not effective
for the modulated sensor. Since the non-linear algorithms do not seem to be best suited
for wavefront reconstruction using a modulated pyramid sensor (accurately studied in
Section 6.5.1), we attribute this impact to a higher error propagation by allowing
errors of the last reconstruction being present in the current reconstruction through
the warm restart technique.
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photon flux non-lin. LIPS non-lin. KLIPS lin. LIPS lin. KLIPS
50 0.8155 0.8145 0.8427 0.8439
100 0.8253 0.8201 0.8517 0.8510
1000 0.8333 0.8248 0.8590 0.8562
10000 0.8342 0.8260 0.8595 0.8577

Table 6.3: Long-exposure Strehl ratios in the K-band for a pyramid sensor with mod-
ulation 4 λ/D obtained with the non-linear Landweber iteration (Algorithm 6.1) and
the non-linear Landweber-Kaczmarz iteration (Algorithm 6.2) after 500 closed loop
simulation steps. The corresponding results from Chapter 5 obtained with the linear
LIPS (Algorithm 5.3) and the linear KLIPS (Algorithm 5.4) are listed as well.

Since we observe a gain in performance by choosing a finer discretization, we divide
every subaperture additionally into 3 pixel areas. Thus, on cost of computation time,
the quality is increased by about 0.0337 in terms of the LE Strehl ratio after 500 time
steps for the KLIPS in the high flux case, i.e., from 0.8193 to 0.8530 for the pyramid
sensor without modulation. Additionally, we experience a faster convergence to higher
Strehl ratios in case of a finer discretization.

As summarized in the first two columns of Table 6.2 for the non-modulated sensor
and of Table 6.3 for the modulated sensor, both proposed algorithms provide stable
wavefront reconstruction with comparable results among each other in terms of LE
Strehl ratios.
In contrast to the results obtained with the linear iterative methods presented in Chap-
ter 5, we obtain higher reconstruction quality with the non-modulated sensor compared
to the modulated sensor in case we are using the proposed non-linear wavefront re-
construction methods. This may come from a higher sensitivity of the non-modulated
sensor. Additionally, we experienced that for the modulated PWFS the non-linear
algorithms are more sensitive with respect to loop gain and step size choices.

6.5.1 Comparison to the linear versions of the algorithms
The sensor without modulation suffers from higher non-linearity effects compared to
a sensor having an adequate modulation. In contrast, the expense of the improved
linearity range of the modulated sensor is reduced sensitivity of the device [38, 72,
73, 166, 212]. This property of the sensor gives us another reason why we are highly
interested in an extension of the regime in which the non-modulated pyramid sensor
effectually operates.
A comparison of the reconstruction quality using non-linear LIPS and non-linear
KLIPS and their linear versions is given in Figure 6.2 as well as Table 6.2 for the
non-modulated sensor. For this sensor type, we obtain higher reconstruction quality
with the non-linear processes. Additionally, the Kaczmarz-type methods outperform
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Figure 6.2: Comparison of non-linear and linear methods for the non-modulated sen-
sor, source [106]. The non-linear algorithms outperform the linear approaches. While
for the non-linear implementations there is almost no difference between the Landwe-
ber (solid lines) and the Landweber-Kaczmarz method (dashed lines), the Kaczmarz
version of the linear reconstructors gives a higher improvement in quality.

Figure 6.3: Comparison of non-linear and linear methods for the modulated sensor,
source [106]. The linear algorithms clearly outmatch the non-linear processes. In the
majority of cases the Landweber algorithms (solid lines) outperform the Landweber-
Kaczmarz approaches (dashed lines).

the standalone Landweber iterations in most of the cases. These conclusions cannot
be directly transferred to the modulated sensor. The results for the modulated sen-
sor in Figure 6.3 as well as Table 6.3 indicate that the linear algorithms outmatch
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the non-linear approaches. This may be due to the fact that modulation increases
the linearity of the pyramid sensor, and therefore linear algorithms are better suited.
Usually, non-linear algorithms for solving Inverse Problems are more error-prone than
linear methods. Due to, e.g., numerical errors, the less non-linear an underlying rela-
tion is, the better linear algorithms perform. Please note that in the linear algorithms,
the CuReD [179, 229] was applied for the first time steps of the AO loop in order to
correct mainly for low frequencies.

We infer that an application of non-linear reconstruction methods can notably improve
the image quality when using a non-modulated pyramid sensor. For the modulated
sensor, we recommend employing linear reconstruction algorithms at least as long as it
is guaranteed that the residual phases being sensed by the wavefront sensor are small,
e.g., in closed loop AO without significant non-common path errors of the system.

XAO simulations for a non-modulated pyramid sensor on the EPICS instruments with
simulation parameters later summarized in Table 7.3 and results presented in Table 6.4
for a variety of photon fluxes confirm the above assertions.

photon flux CGNE lin. KLIPS non-lin. KLIPS
10 0.6268 0.7453 –
50 0.9011 0.8965 0.9002
100 0.9037 0.9005 0.9056
1000 0.9048 0.9002 0.9099
10000 0.9049 0.9006 0.9101

Table 6.4: LE Strehl ratios for the EPICS instrument with a non-modulated PWFS.
Results are listed for those iterative reconstruction algorithms providing the most
accurate wavefront estimates, namely the CGNE approach, the linear KLIPS and the
non-linear KLIPS.

Concerning the computational complexity, the numerical effort of the proposed al-
gorithms is comparable to the complexity of their linear versions being O

(
N3/2

)
as

derived in Chapter 5. Nevertheless, the amount of possible precomputations is larger
in case of the linear versions of the algorithms which leads to a preference for linear
methods with respect to the computational costs of online calculations.

6.6 Summary on non-linear LIPS and KLIPS
In this Chapter, we have established two methods, namely non-linear Landweber and
Landweber-Kaczmarz iteration for accurate and stable non-linear wavefront recon-
struction using pyramid sensors. The theoretical background was accompanied by
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a first numerical evaluation of the reconstruction quality. Especially for the non-
modulated sensor, the two algorithms provided outstanding performance, with the
Landweber iteration being outmatched by its Kaczmarz version. Although the Landwe-
ber method is known to converge slowly, we experienced accelerated convergence for
AO closed loop simulations using only a small amount of Landweber or Landweber-
Kaczmarz iterations per time step. For the sensor having no modulation applied,
the warm restart technique additionally speed up the convergence. The low number
of necessary iterations positively impacts the computational load of the algorithms
whose complexity is given by O

(
N3/2

)
.

According to the results obtained when using linear and non-linear reconstruction
methods in end-to-end simulations, we propose choosing the way of reconstruction,
i.e., linear or non-linear, dependent on the modulation of the pyramid sensor. For the
modulated sensor, we recorded higher reconstruction quality for linear reconstructors
while for the non-modulated sensor we experienced better correction for the non-linear
versions. However, note that this conclusion was drawn from a limited number of closed
loop simulations without critical effects perturbing the linearity of the sensor such as
NCPAs.
The assumption of small residual wavefronts being measured by the wavefront sensor
and on account of this the linearity of the pyramid sensor may be violated by non
common path errors of the system. Thus, the ability of existing linear and non-linear
reconstruction strategies to deliver high-quality wavefront corrections even under the
impact of large NCPAs is of great interest. We plan to come back to this topic
including a detailed investigation of the reconstruction performance for the proposed
non-linear algorithms LIPS and KLIPS in the presence of realistic NCPAs in the
future. Generally, the influence of the magnitude of the incoming phase distortions
on the reconstruction quality needs to be analyzed for both linear and non-linear
reconstruction methods.
Obstruction effects induced by wide telescope spiders were omitted in the simulations.
The non-linear LIPS and KLIPS both offer the possibility to be combined with Direct
Segment Piston Reconstructors according to the so called Split Approach described in
Chapter 8. Nevertheless, the stability of the algorithms for segmented pupils needs to
be examined in detail.
Proper choices for the basis representations in (6.13)-(6.14), e.g., using wavelets, may
significantly improve the reconstruction quality and will be analyzed in future work.
However, the representation using the characteristic functions of the subapertures as
basis functions allows for offline precomputations, an advantage which may not exist
for different choices of basis representations.
Both wavefront reconstruction methods presented in this Chapter are based on the
roof wavefront sensor forward model while data are obtained from pyramid sensors.
The derivation of the Fréchet derivatives and their adjoint operators for the full pyra-
mid sensor model are planned. Since the latter more precisely describes the pyramid
wavefront sensor, we may gain in reconstruction performance.

At present, there already exist several methods that allow for accurate wavefront re-



130 CHAPTER 6. NON-LINEAR WAVEFRONT RECONSTRUCTION USING
LANDWEBER AND LANDWEBER-KACZMARZ ITERATION

construction such as MVM based approaches or the P-CuReD algorithm [198] with
LE Strehl ratios around 0.89 as summarized in Table 7.4 of the following Chapter.
Nevertheless, we want to emphasize the importance of the development of new algo-
rithms since the high reconstruction performance with the linear methods is obtained
in undisturbed closed loop AO systems. As recently as extensive studies on the behav-
ior of the linear and non-linear algorithms in the presence of realistic ELT effects such
as NCPAs, telescope spiders or the low wind effect have been performed, further con-
clusions on preferences can be drawn. Due to the non-linearity of the pyramid sensor,
degradation of the image quality may appear for reconstructors which are based on
the linearity assumption. Furthermore, the LIPS and KLIPS can easier be adapted to
more precise pyramid sensor models or segmented telescope pupils as, for instance, the
P-CuReD algorithm. The non-linear algorithms are in an early stage of development
and improvements for future investigations are expected.



CHAPTER 7. OVERVIEW ON WAVEFRONT RECONSTRUCTION
METHODS FOR PYRAMID SENSORS 131

Chapter 7

Overview on wavefront
reconstruction methods for
pyramid sensors

This Chapter contains an extensive overview on wavefront reconstruction methods
using pyramid wavefront sensor data. The overview was originally given in [111]
as a joint work with Iuliia Shatokhina, Andreas Obereder, and Ronny Ramlau. The
Chapter is divided into two parts. First, in Section 7.1 we give short descriptions of the
main ideas of existing wavefront reconstruction methods for pyramid wavefront sensors
which have not already been introduced in Chapter 4 - 6. Then, we compare existing
and new wavefront reconstruction approaches by giving a well-arranged overview on
the underlying models, quality results, their computational complexities, and whether
they are applicable to sensors with and/or without modulation in Section 7.2.

Generally, we distinguish between interaction-matrix-based and model-based wave-
front reconstruction algorithms. Standard approaches using the interaction matrix of
the system allow to invert the most exact Fourier optics based model of the PWFS.
Model-based methods often work with simplifications of the full pyramid sensor start-
ing from a transmission mask model (cf Section 3.2.1) instead of the phase mask model
(cf Section 3.2.2). The transmission mask approach does not take interference effects
between the 4 intensity patterns on the detector into account. This assumption is
valid if the 4 subbeams leaving the pyramidal prism reach the detector quadrants far
from each other. Often, the pyramid model is further simplified by using the roof sen-
sor approximation, i.e., excluding the cross terms in the pyramid operators. The roof
sensor operators can be linearized, and then the linear model can be further simplified
resulting in one-term operators (cf Section 3.4). For the non-modulated sensor, such
a one-term representation coincides with the finite Hilbert transform of the incoming
phase. For sensors having modulation, one has to adapt the Hilbert transform by the
function indicating modulation. Although the simplifications leading to the one-term
approximation are rather significant, numerical validation shows that several recon-
struction methods based on that idea still perform very accurate wavefront estimation
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by, at the same time, having a significantly reduced computational complexity.

Another distinguishing criterion of wavefront reconstruction algorithms is the non-
linearity or linearity. The pyramid wavefront sensor is known to be a non-linear sensor
with an almost linear response in closed loop AO when the residual wavefronts are
small [28, 212]. The most common way to overcome non-linearity is to increase the
linearity regime of the pyramid sensor by applying modulation at the cost of reduced
sensitivity [38, 73, 212]. However, in some instruments currently under construction
for ELT-sized telescopes, the pyramid sensor is going to be installed in a cryogenic en-
vironment. Physical modulation of the prism generates heat, and thus has a negative
influence on cryogenic applications. The non-modulated sensor is also the fallback
option in case modulating fails due to any technical reasons. Not only due to the
enhanced sensitivity of the PWFS, but also because of these impacts becoming more
prominent with increasing telescope sizes, the interest in the non-modulated sensor is
increasing. Especially for the pyramid sensor without modulation, non-linear wave-
front reconstruction algorithms are expected to yield high quality improvements.

While most of the algorithms are applicable with the same computational load to the
PWFS both with and without modulation, several of them are not. For instance,
the algorithms which are based on the inversion of the Hilbert transform are usually
only applicable to the non-modulated sensor data. Some other algorithms have an
increased computational demand for the modulated pyramid sensor or do not converge
for a specific modulation scenario.

The reconstruction approaches we are considering in the following split into interaction-
matrix-based approaches, Fourier domain methods, Hilbert transform based algo-
rithms, as well as iterative methods and are listed below:

• Interaction-matrix-based reconstructors [12, 14, 55, 105, 129, 130, 142, 204]

– deterministic setting: least-squares pseudo-inverse
– deterministic setting: regularized least-squares pseudo-inverse
– Bayesian setting: maximum a posterior (MAP) reconstructor
– Bayesian setting: minimum mean-square estimator (MMSE)

• Fourier domain methods

– Preprocessed Cumulative Reconstructor with Domain decomposition
(P-CuReD) [198]

– Fourier Transform Reconstructor (FTR) [162]
– Convolution with the Linearized Inverse Filter (CLIF) [194, 196]
– Pyramid Fourier Transform Reconstructor (PFTR) [194, 196]
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• Hilbert transform methods

– Hilbert Transform Reconstructor (HTR) [155, 197, 227]
– Two Component Reconstructor (TCR) [228]
– Finite Hilbert Transform Reconstructor (FHTR) [191]

• non-linear iterative methods

– phase retrieval algorithm [38]
– Jacobian reconstruction (JR) method [125]
– quasi-Newton method for optimization [78, 79]

New algorithms which were already presented in Chapter 4 - 6 are:

• Hilbert transform methods

– Singular Value Type Reconstructor (SVTR) [107]

• linear iterative methods

– Conjugate Gradient for the Normal Equation (CGNE) for pyramid sen-
sors [108, 109]

– Steepest Descent (SD) for pyramid sensors [108, 109]
– Steepest Descent-Kaczmarz (SD-K) for pyramid sensors [108, 109]
– linear Landweber Iteration for Pyramid Sensors (LIPS) [108, 109]
– linear Kaczmarz-Landweber It. for Pyramid Sensors (KLIPS) [108, 109]

• non-linear iterative methods

– non-linear Landweber Iteration for Pyramid Sensors (LIPS) [106]
– non-linear Kaczmarz-Landweber It. for Pyramid Sensors (KLIPS) [106]

Let us now briefly explain the core characteristics of those algorithms for wavefront
reconstruction from pyramid sensor data which were not introduced in Chapter 4 - 6.
A precise analysis of the proposed methods can be found in the mentioned references.
Note that in the following we use the notations P =

[
−1

2P x,
1
2P y

]
, R =

[
−1

2Rx,
1
2Ry

]
,

T =
[
−1

2T x,
1
2T y

]
, H =

[
−1

2Hx,
1
2Hy

]
and s = [sx, sy] in order to be consistent

with the various approximations of equation (3.8) utilizing the operators defined in
Chapter 3.
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7.1 Wavefront reconstruction: current state of the
art

Since the pyramid sensor was introduced in the 1990s [164], a considerable amount
of wavefront reconstruction attempts was found. First, the interaction-matrix-based
MVM approaches, already established for other sensor types, were applied to pyramid
sensor data [12, 14, 55, 105, 129, 130, 142, 204]. Later, Fourier transform methods
exiting for SH sensors were adapted to the application with a PWFS [162] and first
experiments with non-linear algorithms were reported [38, 125]. Additionally, the
development of fast model-based linear reconstructors [19, 107, 108, 109, 125, 155,
191, 194, 196, 197, 198, 227, 228] and again non-linear reconstructors [78, 79, 106]
followed.

7.1.1 Interaction-matrix-based reconstructors
Interaction-matrix-based methods are the standard on existing telescope facilities. Sev-
eral variants are often summarized as matrix-vector multiplication (MVM) approaches.
An overview on these methods can be found in Chapter 8. The algorithms are generally
applicable to pyramid sensors with and without modulation. Inverting the interaction
matrix scales as O (n3

a) [55] and the MVM step as O (n2
a) with the number na of active

actuators. The computational complexity is rather demanding, which makes MVM
methods hardly feasible for large scale AO systems having, e.g., approximately 30000
actuators to control in real-time.

The idea of these methods is based on the simple matrix-relation between discrete
sensor data s̃ and the sought-after mirror actuator commands ã (which are related to
the unknown incoming wavefront Φ) given by

s̃ = M ã.

Thus, any procedure for finding the generalized inverse M † of the interaction matrix
M (e.g., least-squares pseudo-inverse, regularized least-squares pseudo inverse, or in-
version using a truncated singular value decomposition) can be seen as an interaction-
matrix-based wavefront reconstruction approach.

7.1.2 Fourier domain methods: P-CuReD
The Preprocessed Cumulative Reconstructor with Domain decomposition (P-CuReD)
[198] is a two step approach consisting of a data preprocessing part and the appli-
cation of the CuReD [147, 179, 180, 229], originally developed for Shack-Hartmann
sensors. The idea is applicable to pyramid sensors with and without modulation.
The main argument for using the P-CuReD as wavefront reconstruction method for
pyramid sensors is the low computational load of the algorithm by simultaneously
providing exceptional quality performance. With a linear complexity, the algorithm
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is (to our knowledge) the fastest reconstruction method available for pyramid sensors
and gives quality results which are comparable to or even better than those obtained
by interaction-matrix-based approaches.

The first step, the data preprocessing, is based on an analytical Fourier domain (FD)
relation between linearized pyramid sensor data and Shack-Hartmann sensor data.
Approximating the pyramid sensor by the simpler roof sensor model or, more precisely,
the one-term assumption (3.28), this FD relation to SH measurements is given by

F {ssh} (ξ) = F {spyr} (ξ) · gsh/pyr (ξ) .

The measurements ssh or spyr describe Shack-Hartmann or pyramid sensor data re-
spectively and gsh/pyr the SH-to-pyramid transmission filter. For the spatial frequency
ξ we consider the interval [−ξcut, ξcut] with cut-off frequency ξcut = 1/ (2d) for the
subaperture size d. Since for the roof sensor the measurements are decoupled for
x- and y-direction all these considerations can be made in 1d. The SH-to-pyramid
transmission filter gsh/pyr is formulated as

gsh/pyr (ξ) := F {ssh} (ξ)
F {spyr} (ξ) = gsh (ξ)

gpyr (ξ) ,

where gsh, gpyr describe the SH or pyramid filter functions. As derived in [198, 212],
for the non-modulated sensor the transmission filter is represented by

gnsh/pyr (ξ) = 2πdξ sgn (ξ) ∀ξ ∈ [−ξcut, ξcut] ,

for the circularly modulated sensor by

gcsh/pyr (ξ) =


2πdξ sgn (ξ) , |ξ| > ξmod,

π2dξ

arcsin (ξ/ξmod)
, |ξ| ≤ ξmod,

and for the linearly modulated sensor by

glsh/pyr (ξ) =
2πdξ sgn (ξ) , |ξ| > ξmod,

2πdξmod, |ξ| ≤ ξmod.

For a modulation amplitude α and sensing wavelength λ (see (3.7)), the parameter
ξmod = α/λ indicates the frequency at which the transition between the two regimes of
the pyramid sensor (slope versus phase mode) appears (cf Figure 3.2). Converting the
transmission filters into space domain kernels by the application of the inverse Fourier
transform, i.e.,

psh/pyr (x) = F−1
{
gsh/pyr

}
(x)

and choosing a suited discretization approach we end up with a representation of
the kernels having only few nonzero values. Thus, the data preprocessing, which is
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approximated as a row- and column-wise convolution of the measurements with the
corresponding kernel, is computationally cheap.
After the pyramid sensor measurements are transformed into SH-like data, the CuReD
algorithm is applied to the modified pyramid signal. Besides detailed studies based on
numerous closed loop end-to-end simulations, tests on sky proved a high-quality and
high-speed performance of the CuReD for SH sensors [15, 16].

Putting the two steps together we obtain an accurate wavefront reconstruction method
with a complexity of O (na). An additional advantage of the P-CuReD is the ease of
usage compared to other approaches since no optimization of intrinsic regularization
parameters is needed during the reconstruction process, e.g., if atmospheric conditions
change. AO simulation tools users outside our group performed Octopus end-to-end
simulations and compared the performances of a modal MVM with the P-CuReD for
XAO settings, e.g., in [36, 41]. In [41] the MVM and P-CuReD algorithm give almost
the same reconstruction quality with only very slight discrepancies. Moreover, it was
shown that the P-CuReD has a faster convergence to high Strehl ratios than the tested
MVM approach.

Please note that the P-CuReD algorithm can also be implemented as an MVM since
both steps of the algorithm are linear. Nevertheless, for an implementation of this
approach as MVM its main advantage, the linear complexity, gets lost.

In principle, the data preprocessing step can be applied in combination with any other
reconstructor for Shack-Hartmann wavefront sensor. For instance, the AAO team
reports first attempts in [149] to combine data preprocessing with the Finite Element-
Wavelet Hybrid Algorithm (FEWHA) [168, 225, 226]. For atmospheric tomography,
FEWHA calculates the Bayesian maximum a posterior estimate using a preconditioned
conjugate gradient method that is coupled with a multi-scale strategy. The algorithm
originally utilizes Shack-Hartmann data for the computation of turbulent layers and
performs a projection step afterwards. For the discretization of the turbulent layers
the method uses a finite element and a wavelet basis simultaneously.

In case of segmented pupils the P-CuReD algorithm combined with a Direct Segment
Piston Reconstructor (DSPR) [110, 149] shows excellent performance without almost
no loss in quality compared to simulations without telescope spiders realized for the
METIS instrument on the ELT. This scheme named Split Approach is investigated in
Chapter 8 in more detail.

7.1.3 Fourier domain methods: FTR
Similarly to the P-CuReD algorithm, the Fourier Transform Reconstructor (FTR)
[162] applies an approach originally developed for SH sensors [161]. In contrast to
the P-CuReD, the authors in [162] did not perform any adaption of the method to
the pyramid sensor. Instead, the method is underpinned by the assumption of a large
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amount of modulation being applied to the PWFS, which makes its response function
linear and the sensor itself similar to the SH sensor. The method suggests to relate the
pyramid sensor signal to the gradients of the incoming wavefronts. This connection
results from the pyramid sensor model derived within the geometrical optics frame-
work valid for large modulation amplitudes. In order to guarantee spatial periodicity,
the pyramid sensor signal is appropriately extended outside the pupil mask. To the
resulting and afterwards Fourier transformed data an inverse filter relevant for SH
sensors is applied. The final DM commands are obtained by taking the inverse Fourier
transform.

The FTR offers a possibility for wavefront reconstruction using pyramid sensors with a
rather large amount of modulation and has a computational complexity ofO (na log na)
if the Fast Fourier Transform (FFT) is used. Since a close correlation between SH and
pyramid data is only present for a large amount of modulation, the assumption of
pyramid measurements being represented as the gradients of the incoming wavefronts
is violated for small or no modulation applied to the PWFS. In case of arbitrary
modulation amplitudes, this can be reformulated as follows: The similarity of the
PWFS and the SH sensor is only provided for a certain part of the spatial frequencies
and the FTR is outperformed by other methods. In [162] it is reported that for
small modulations, e.g., 1 λ/D in an 8 m telescope simulation with a sensor having
40×40 subapertures, the application of the method is without success. This may affect
large-scale AO on Extremely Large Telescope systems stronger due to the reciprocal
dependency of the telescope diameter on the modulation amplitude of the pyramid
sensor.
Just recently, there were laboratory demonstrations of Fourier reconstruction published
in [19] that is directly based on the pyramid sensor’s Fourier model as the two Fourier
domain methods presented below.

7.1.4 Fourier domain methods: CLIF & PFTR
The Convolution with the Linearized Inverse Filter (CLIF) and the Pyramid Fourier
Transform Reconstructor (PFTR) [194, 196] work with the correlation between the
spectra of the discrete sensor data and the incoming wavefront. The PFTR is similar
to the FTR but with Fourier domain filter functions being adapted to the pyramid sen-
sor instead of SH filters. The CLIF is the spatial domain representation of the PFTR.
CLIF and PFTR are applicable to the pyramid sensor with and without modula-
tion and, as the P-CuReD algorithm, based on the linearized one-term approximation
(3.28) of the pyramid sensor. The common idea of both algorithms is the application
of the inverse Fourier domain filter functions. While for the CLIF method this is per-
formed in the spatial domain resulting in a complexity of O

(
n3/2
a

)
, for the PFTR the

same inversion procedure is carried out in the Fourier domain, and therefore scales as
O (na log na) together with the FFT.

Please note that in the following s̃ indicates discrete pyramid sensor data and ξ̃ discrete
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frequencies. According to the descriptions in [196, 212], in a discrete setting the
spectrum F {s̃} of pyramid measurements s̃ evaluated at the frequency ξ̃ is a point-
wise product of the wavefront spectrum F {Φ} with a filter g, i.e.,

F {s̃}
(
ξ̃
)

= F {Φ}
(
ξ̃
)
· g
(
ξ̃
)
.

The discrete filter is given by

g
(
ξ̃
)

= gpyr
(
ξ̃
)
· sinc

(
dξ̃
)

for the pyramid filter functions

gnpyr (ξ) = i sgn (ξ) ∀ξ ∈ [−ξcut, ξcut]

in case of the non-modulated sensor,

gcpyr (ξ) =


i sgn (ξ) , |ξ| > ξmod,
2i
π

arcsin (ξ/ξmod) , |ξ| ≤ ξmod
(7.1)

for the circularly modulated sensor, and

glpyr (ξ) =
i sgn (ξ) , |ξ| > ξmod,

iξ/ξmod, |ξ| ≤ ξmod
(7.2)

for the linearly modulated sensor.
Therefore, in the PFTR, the wavefront is reconstructed in the Fourier domain by the
multiplication with the inverse filter

F {Φ}
(
ξ̃
)

= F {s̃}
(
ξ̃
)
· g−1

(
ξ̃
)

and a subsequent inverse Fourier transform, or in the CLIF in the spatial domain by
the convolution with the kernel

Φ (x̃) =
(
s̃ ∗ F−1

{
g−1

})
(x̃) .

Since for the roof wavefront sensor approximation data in x-direction are independent
from y-direction and vice versa, the considered convolutions and Fourier transforms
are in 1d. Data in both directions are handled separately and both obtained recon-
structions are averaged afterwards.
The Fourier domain filters g{n,c,l} for different modulation scenarios with modulations
0 and 12λ/D are illustrated in Figure 7.1.

Several numerical simulations carried out in closed loop end-to-end simulations in a
wide range of atmospheric conditions and photon fluxes showed that the CLIF and
PFTR persuade especially for their high reconstruction quality in low flux cases. While
results in high flux are slightly under those obtained with the P-CuReD or MVM,
CLIF/PFTR outperforms the tested MVM approach for fainter stars in [196].
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Figure 7.1: Fourier domain filters g{n,c,l}, source [111].

7.1.5 Hilbert transform methods: HTR
The Hilbert Transform Reconstructor (HTR) arranges the transition from Fourier do-
main methods to reconstructors based on the inversion of the Hilbert transform H
according to the operators Hx and Hy in (3.21) given by

(HxΦ) (x, y) := 1
π
p.v.

∫
R

Φ (x′, y)
x′ − x

dx′.

These methods, generally, are only applicable to a pyramid sensor without modulation.
If we assume an infinite telescope size in the definition of the operator Ln in (3.28),
the non-modulated pyramid sensor measurements can be approximated by the Hilbert
transform operator applied to the incoming phase written as

s = HΦ.

Thus, any attempts of inverting the Hilbert transform H can be utilized for recon-
structing the wavefront Φ from non-modulated pyramid sensor data s.

The inverse of the Hilbert transform is given by its negative, i.e., H−1 = −H . The
inversion itself is based on the simple Fourier domain representation of the Hilbert
transform given by

F {HΦ} (ξ) = −i sgn (ξ)F {Φ} (ξ) .
In the HTR algorithm, the inversion of the Hilbert transform is performed in the
Fourier domain as a multiplication of the phase spectrum F {Φ} (ξ) with the corre-
sponding filter function i sgn (ξ). The reconstructed phase spectrum is afterwards con-
verted to the spatial domain by the application of a one dimensional inverse Fourier
transform. Using the FFT algorithm, the mentioned reconstruction method has a
computational complexity that scales as O (na log na).
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The idea was first proposed in [155]. Later, an adaption of the algorithm named
the Hilbert Transform with Mean Restoration (HTMR) was found by the Austrian
Adaptive Optics team [197, 227]. It was recognized that when using the HTR algorithm
the mean values of each row for reconstructions in x-direction and of each column for
reconstructions in y-direction are zero, and therefore the continuity of the wavefronts
gets lost. The idea in the HTMR algorithm is to restore the mean values.

Compared to interaction-matrix-based results in closed loop simulations for an XAO
setting on the ELT, these approaches give worse quality. One reason may be that the
aperture mask has a strong influence on the sensor data. Hence, the assumption of
an infinite telescope size possibly violates the reconstruction performance for annular
telescope pupils.

7.1.6 Hilbert transform methods: TCR
Approximating the pyramid sensor by a linearized roof sensor (or, more precisely, the
one-term assumption (3.28) of it) and considering the modulated filter functions (7.1)-
(7.2) one sees that the spectrum of the sensor data consists of two different components,
the high frequency part which is constant and given by i sgn (ξ) and the low frequency
part (almost) linear in ξ. While the high spatial frequencies of the wavefront are rep-
resented in the pyramid sensor data through the Hilbert transform, the low frequency
component is represented in the same way as for the SH sensor, i.e., the signals are
essentially the gradients of the incoming phases.

The idea of the Two Component Reconstructor (TCR) [228] is to consider these two
parts separately. For that reason, the sensor data s are split into a high frequency
component shigh and a low frequency component slow with respect to the threshold
frequency ξmod = α/λ. The high frequency part is reconstructed using the HTMR
algorithm and the low frequencies are estimated by application of the CuRe [179,
229], a predecessor of the CuReD [180] for SH sensors. Both reconstructions are then
summed up to one final solution by using two different gains, which are individually
adapted to both regimes.

The TCR was only applied to modulated pyramid sensor measurements and has a
computational complexity of O (na log na). After tests for an 8 m telescope having
40 × 40 subapertures carried out in Octopus, the development of the algorithm was
not continued and the AAO team concentrated on other more promising approaches
as, for instance, the P-CuReD.

7.1.7 Hilbert transform methods: FHTR
Another wavefront reconstruction method for non-modulated pyramid sensors is the
Finite Hilbert Transform Reconstructor (FHTR) [191]. As for the Hilbert transform
reconstructors described above, the FHTR is based on a theoretical analysis of the
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pyramid sensor transmission mask forward model. After a linearization, which is
justified in closed loop AO [28, 212], the pyramid operator is approximated by the
finite Hilbert transform T x : L2 (Ω)→ L2 (Ω) which is given by

(T xΦ) (x, y) := 1
π
p.v.

∫
Ωy

Φ (x′, y)
x′ − x

dx′

for a line Ωy of the aperture Ω (cf Ln in (3.28)). In contrast to the HTR and HTMR,
the algorithm now takes finite telescope apertures into account.

As before, the measurements in x- and y-directions are decoupled. Both directions are
considered as independent, the reconstruction is performed in 1d, and then the two
reconstructions are averaged.

In the FHTR approach, the wavefronts are reconstructed by applying the inverse T−1
x

of the finite Hilbert transform operator T x to the data. One can either utilize the
linearized pyramid sensor model (3.29)

sx(x, y) = −1
2 [(T xΦ) (x, y)− Φ(x, y) (T x1) (x, y)] ,

where 1 represents the constant function being equal to 1, and reconstruct iteratively
by

Φk+1 (x, y) = −T−1
x (2sx − Φk · (T x1)) (x, y)

or simplify the pyramid sensor measurements further by

sx(x, y) = −1
2 (T xΦ) (x, y) (7.3)

and reconstruct just by
Φ (x, y) = −2

(
T−1
x s

)
(x, y) .

In contrast to the classical Hilbert transform H with inverse H−1 = −H , the inver-
sion of the finite Hilbert transform is not straightforward. However, the inversion of
the finite Hilbert transform is nowadays a well-studied problem with many different
implementations of the formulas depending on the boundedness of the involved func-
tions on the boundaries of the considered area of interest, e.g., those found in [103,
160, 205].
For the FHTR, the telescope aperture is mapped onto the interval [−1, 1]2 and the
algorithm uses the inverse introduced in [160] as

(
T−1
x sx

)
(x, y) = − 1

π

1∫
−1

√
1− x2

1− x′2
sx (x′, y)
x′ − x

dx′

for the operator in x-direction and a fixed y ∈ [−1, 1] which gives a problem in 1d.
The application of the operator T−1

y to the data sy is performed separately and in a
similar way.
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With the computational complexity of O
(
n3/2
a

)
, the algorithm takes an intermediate

position among the reviewed methods with respect to speed. Numerical closed loop
AO simulations in Octopus showed that the reconstruction performance of the FHTR
is rather limited compared to P-CuReD results.

7.1.8 Non-linear iterative methods: phase retrieval algorithm
Phase retrieval algorithms in their general form are iterative Fourier domain methods
for finding the unknown phase, which satisfies a set of constraints for a measured ampli-
tude, from a given complex signal. In [38], phase retrieval is performed in the context of
AO and aims at reconstructing the incoming wavefront Φ from intensity measurements
provided by a flat pyramid-like sensor type. The authors adapted two well-known al-
gorithms, namely the Gerchberg-Saxton [88] and the error-reduction method [77], to
be used in conjunction with a lenslet array placed at the focal plane which constitutes
such a sensor. In the paper, the Gerchberg-Saxton algorithm outperforms the error-
reduction approach. The twin-image ambiguity problem represented with a lenslet
array in the pupil plane, in contrary to SH sensors, can be avoided. The phase re-
trieval is performed in three Fourier planes and any confusion between an object and
its complex conjugate can be removed because of the subdivision at the focal plane.
The authors proposed two different choices for the starting value of the algorithm,
either a zero phase or the reconstruction obtained from a linear interaction-matrix-
based approach. The second idea obviously brings higher reconstruction performance.
This means that an additive MVM step is executed which supplementary increases
the computational load of approximately 200 expensive phase retrieval iterates.

As reported in [38], in simulations on a circular pupil the phase retrieval approaches
yield better reconstruction quality than an interaction-matrix-based MAP reconstruc-
tor at the cost of the computational complexity highly outnumbering even that of the
MVM. The latter constitutes the major drawback of these algorithms making them
unfeasible for large AO systems on ELTs.

7.1.9 Non-linear iterative methods: JR method
A non-linear wavefront reconstruction algorithm named Jacobian Reconstruction (JR)
method based on the transmission mask model of the non-modulated pyramid sensor
has been presented in [125]. The idea is related to an iterative approach utilizing the
analytical model of the sensor and Newton’s method for reconstruction.

If only one Newton iteration is applied, the procedure is linear having a computational
complexity comparable to that of conventional MVM algorithms given by O (n2

a). In
the non-linear approach, one has to apply more Newton iterations which dramatically
increases the amount of computations. The Jacobian matrices need to be recomputed
at each step. The computational requirements of the Jacobian matrix calculations
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increase to the fourth power of the Jacobian resolution size, where the Jacobian res-
olution is at least as big as the size of the wavefront sensor measurement grid in one
direction. This results in 50 − 1000 times slower reconstruction times depending on
the incorporated solver methods compared to, e.g., the linear approach.

The pyramid sensor model used for deriving this wavefront reconstruction method as
well as the numerical simulations do not take interference effects between the four im-
ages on the detector into account. Simulation results are obtained for an 8 m telescope
having a non-modulated pyramid sensor with 40× 40 subapertures. It is reported in
[125] that in a closed loop simulation the conventional MVM using Karhunen-Loève
modes gives comparable results or is slightly outperformed by the JR method with 1
iteration, i.e, its linear version, and that the gain in performance when using additional
Jacobi iterations was negligible. While correctly calibrated linear interaction-matrix-
based algorithms are powerful strategies for reconstructions if a sensor is fully or almost
linear, the JR method was experienced to be most useful at the non-linear regime of the
pyramid sensor. In high turbulence, the AO performance of a conventional calibrated
MVM method is improved by using a synthetic Jacobian-based reconstruction matrix.
According to [125], the JR method mainly reduces the residual energy at low spatial
frequencies which is of particular importance for exoplanet detection. Additionally,
it was found that the roof sensor is more linear than the pyramid, i.e., most of the
non-linearity properties are present in the cross terms of the pyramid sensor model.

Note that this approach describes a non-linear strategy for wavefront reconstruction.
Nevertheless, as mentioned in [125], most of the Strehl ratio improvement was achieved
by applying only one Newton iteration which again results in a linear reconstructor.
Enhancements when using more iterations are negligible.

7.1.10 Non-linear iterative methods: quasi-Newton method
A non-linear iterative reconstructor for pyramid sensors that utilizes the pyramidal
phase mask model including interference effects is presented in [78, 79]. The wave-
front is estimated by solving an unconstrained non-linear minimization problem using
Newton’s method as in the previously summarized JR method.

In contrary to the common definition using the intensity difference scheme, the pyramid
operator is defined in [78] as the electromagnetic field in the detector plane. Although
performing wavefront reconstruction from PWFS data, which are related in a non-
linear way to the incoming phase, the idea is based on the fact that the pyramid
operator is indeed non-linear with respect to the incoming phase Φ but linear with
respect to the electric field

Ψ = Ω · e−iΦ,
where Ω describes the real-valued amplitude.
Newton’s method in its general form requires the Jacobian and the Hessian of the
cost function. The Hessian is inverted iteratively by solving a system of equations
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using CG. A possible avoidance of this computational expensive steps is found by a
variety of quasi-Newton methods which only need the gradient of the cost function.
The quasi-Newton algorithm used in this approach is the Broyden-Fletcher-Goldfarb-
Shannon (BFGS) method. As initial guess, the solution of the linear least-squares
approach is used. This means that the quality improvement relies on two successive
wavefront reconstruction processes at the price of computational complexity, as in
the phase retrieval iterative method. However, the algorithm applied to pyramid
sensors is efficient in the sense that most computationally demanding calculations
can be computed offline. The attempt in [78] examines the pyramid sensor without
modulation and it is mentioned that for a modulated sensor the computational expense
of calculating the intensity and its derivatives will increase.

Simulations were carried out for a non-modulated pyramid sensor using a setting with
parameters similar to the SCExAO/Subaru on a circular aperture. It was assumed
that a first-stage AO system has already removed many of the low order aberrations,
i.e., there are wavefronts simulated which already correspond to a given Strehl ratio
such as 0.3.
The author compared linear least-squares with the initial guess chosen as a flat wave-
front and non-linear least-squares with the solution of the linear problem as starting
point for the iteration. No straight conclusion can be drawn regarding which ap-
proach – linear or non-linear – provides a better reconstruction quality. Both methods
have shown their advantages in different simulations depending on the photon flux,
the signal-to-noise ratio, and the height of the Strehl ratio already obtained with the
first-stage AO system if the non-linear method is used.
Throughout the Thesis we will name this reconstruction algorithm which is presented
in [78] the quasi-Newton method for pyramid sensors.

7.2 Model, speed, and quality performance com-
parisons

In order to give a clear overview on the aforesaid algorithms for wavefront reconstruc-
tion in astronomical AO using pyramid wavefront sensors, we present the Tables 7.1 -
7.2 and 7.4, where selected properties for all methods are listed. More precisely, we
consider the distinguishing criteria already mentioned at the beginning of this Chap-
ter. The characteristics we recall are the pyramidal glass prism mask models on which
the reconstruction methods are based, i.e., phase or transmission mask, whether the
algorithms are linear or non-linear, and if the attempts are based on the full pyramid
sensor model, the roof sensor or the one-term assumption. Additionally, we once more
bring up the adaptability of the reconstruction processes to non- and modulated sen-
sor data as well as the computational complexity of all approaches and the achievable
reconstruction quality of selected algorithms.
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Algorithm Pyramidal mask Linearity Sensor Modulation
phase transm. non-lin. lin. pyr. roof one-term yes no

Interaction-matrix-based 3 3 3 3 3

P-CuReD 3 3 3 3 3

FTR 3 3 3

CLIF 3 3 3 3 3

PFTR 3 3 3 3 3

HTR 3 3 3 3

TCR 3 3 3 3

FHTR 3 3 3 3 3

SVTR 3 3 3 3

CGNE 3 3 ( 3 ) ( 3 ) 3 3 3

SD 3 3 ( 3 ) ( 3 ) 3 3 3

SD-K 3 3 ( 3 ) ( 3 ) 3 3 3

linear LIPS 3 3 ( 3 ) ( 3 ) 3 3 3

linear KLIPS 3 3 ( 3 ) ( 3 ) 3 3 3

phase retrieval 3 3 3 3

JR method 3 3 3 3 3 3

quasi-Newton method 3 3 3 ( 3 ) 3

non-linear LIPS 3 3 ( 3 ) 3 3 3

non-linear KLIPS 3 3 ( 3 ) 3 3 3

Table 7.1: Overview on existing wavefront reconstruction methods for the PWFS with
respect to underlying pyramid sensor models. The check marks in brackets indicate
that an according extension has already been considered in theory but has not been
implemented yet.

To analyze the performance quality of the algorithms for the pyramid sensor we simu-
late the ELT currently under construction in Chile. Simulations are carried out for the
METIS [24] and the EPICS [120] instrument in a closed loop setting. The reconstruc-
tion quality is quantified in terms of the LE Strehl ratio. The observing wavelength
for the results presented in the following corresponds to λscience = 2.2 µm (K-band).
Table 7.3 provides an overview of the simulation parameters.

For a SCAO simulation we consider a METIS-like case [24] of the ELT having a pri-
mary mirror diameter of 39 meters of which only the inner 37 meters are used for
the instrument. The edges of the real 39 m primary mirror are cropped such that it
remains a circular pupil with roughly 30% of the primary mirror being obstructed by
the secondary mirror. Six telescope spiders being 50 cm thick are taken into account
in 2 of the simulations. The end-to-end simulation software generates a von Karman
realization of median atmospheric conditions having 35 frozen layers at heights be-
tween 30 m and 26.5 km. The Fried parameter is equal to r0 = 15.7 cm at λ = 500 nm
and the outer scale is L0 = 25 m. The simulated screens are resolved with 0.05 m per
pixel which results in 740 × 740 pixels on the aperture for a 37 m telescope. Sensing
is performed in the K-band at a wavelength of λ = 2.2 µm. The data in Octopus are
simulated using the built-in model of a 74×74 pyramid wavefront sensor without mod-
ulation and with modulation 4 λ/D, i.e., the subaperture size is 0.5 m. The pyramid
sensor measurements are read out 500 times per second for the modulated sensor or
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Algorithm Modulation Complexity
no yes

Interaction-matrix-based [12, 14, 55, 105, 129, 130, 142, 204] + + O(n2
a)

P-CuReD [198] + + O (na)
FTR [162] – + O (na logna)
CLIF [196] + + O

(
n

3/2
a

)
PFTR [196] + + O (na logna)
HTR [155, 227] + – O (na logna)
TCR [228] – + O (na logna)
FHTR [191] + – O

(
n

3/2
a

)
SVTR [107] + – O

(
n

3/2
a

)
CGNE [109] + + O

(
n

3/2
a

)
SD [109] + + O

(
n

3/2
a

)
SD-K [109] + + O

(
n

3/2
a

)
linear LIPS [109] + + O

(
n

3/2
a

)
linear KLIPS [109] + + O

(
n

3/2
a

)
phase retrieval [38] + – ≥ O

(
n2
a

)
JR method [125] + – ≥ O

(
n2
a

)
quasi-Newton method [78] + – ≥ O

(
n2
a

)
non-linear LIPS [106] + + O

(
n

3/2
a

)
non-linear KLIPS [106] + + O

(
n

3/2
a

)
Table 7.2: Overview on existing wavefront reconstruction methods for the PWFS
showing the computational complexity and the modulation scenarios they were already
implemented for.

1000 times per second for the non-modulated sensor. The deformable mirror geometry
corresponds to the M4 geometry that is planned for the ELT (see Figure 2.11). In
Octopus, a total number na = 5190 of mirror actuators is controlled.
For the XAO case we simulate a variant of the EPICS instrument [120] on the originally
planned 42 m ELT. The simulation parameters of the closed loop setting are summa-
rized in Table 7.3. We have a central obstruction of 28% and do not take telescope
spiders into account. The phase screens are generated according to the von Karman
statistics for 9 atmospheric layers at heights between 47 m and 18 km. The seeing
conditions are median, the Fried parameter is equal to r0 = 12.9 cm at λ = 500 nm
and the outer scale corresponds to L0 = 25 m. The resolution of the incoming screens
is given by 2000 × 2000 pixels on the pupil. Sensing is performed in the visible at
λ = 0.7 µm. The data is provided by a non- and modulated 200× 200 pyramid wave-
front sensor having a subapertures size of 0.21 m. The pyramid sensor measurements
are read out 3330 times per second. For XAO, we control a total number of na = 29618
mirror actuators of the deformable mirror positioned according to the Fried geometry.
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SIMULATION PARAMETERS METIS-like simulation EPICS-like simulation
telescope diameter 37 m 42 m
central obstruction 30% 28%
science target on-axis (SCAO) on-axis (XAO)
WFS PWFS PWFS
sensing band λ K (2.2 µm) R (0.7 µm)
evaluation band λscience K (2.2 µm) K (2.2 µm)
modulation [0, 4] [0, 4]
controller integrator integrator
atmospheric model von Karman von Karman
number of simulated layers 35 9
outer scale L0 25 m 25 m
atmosphere median median
Fried radius r0 at λ = 500 nm 0.157 m 0.129 m
number of subapertures 74× 74 200× 200
number of active subapertures [3874, 3912, 4128] out of 5476 28796 out of 40000
linear size of simulation grid 740 pixels 2000 pixels
DM geometry ELT M4 model Fried
telescope spiders yes/no no
DM delay 1 1
frame rate [1000, 500] Hz 3300 Hz
photon flux [600, 10000] ph/subap/frame 50 ph/subap/frame
detector read-out noise 1 electron/pixel 2.8 electron/pixel
background flux 0.000321 photons/pixel/frame 0 photons/pixel/frame
simulation time 0.5− 2 s ([500, 1000] iterations) ∼ 0.15 s (500 iterations)

Table 7.3: Overview of simulation parameters for the currently scheduled METIS and
an EPICS-like instrument.

The numerical results in Table 7.4 indicate that the optimal choice of the wavefront re-
constructor heavily depends on physical parameters related to the telescope facility and
the sensor device such as subaperture size or the modulation amplitude of the pyramid
sensor and on atmospheric parameters. Definitely, the most advanced reconstruction
approaches for telescope systems having non-segmented pupils are interaction-matrix-
based methods. These methods are nowadays running in AO systems of ground-based
observing facilities having mirror sizes up to about 10 m, and therefore are those algo-
rithms for which users have the most practical experience. MVM approaches usually
have the most exact pyramid sensor model as a foundation since the calibration often
is performed in realistic environments. Unfortunately, these methods have a major
drawback – their high computational complexity. While the computational load is
expected to be manageable at the time of future ELT launches for comparably small
AO systems such as in SCAO, achieving the speed required for large scale AO systems
is doubtful. As an alternative, we suggest fast, model-based wavefront reconstruction
algorithms. As such, the P-CuReD is outstanding for its quality results, its speed,
and its ease of usage in all performed test cases. For the non-modulated sensor,
the non-linear LIPS and KLIPS give promising quality results. In particular in the
XAO simulation and for the modulated sensor, the performance of the linear CGNE
approach must be emphasized. Above all, the algorithms which were presented in
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Algorithm Quality in end-to-end simulations (Octopus)
(LE Strehl ratios in the K-band)

SCAO SCAO SCAO SCAO XAO XAO
Modulation (λ/D) mod 0 mod 4 mod 0 mod 4 mod 0 mod 4
Photon flux (ph/pix/it) 10000 10000 10000 600 50 50
Frame rate (kHz) 1 0.5 1 0.5 3 3
Mirror geometry M4 M4 M4 M4 Fried Fried
Telescope spiders 7 7 3 3 7 7

Interaction matrix inversion: modal ≈ 0.62 [132] 0.888 0.859 [110] 0.96
Interaction matrix inversion: zonal 0.89 0.890 0.894 [110]
Preprocessed CuReD (P-CuReD) 0.871 0.887 0.865 0.878 [110] 0.916 0.961
Conv. with Lin. Inverse Filter (CLIF) 0.88 0.94
Pyramid FTR (PFTR) 0.88 0.94
Finite Hilbert Transform Rec. (FHTR) 0.779 NA NA 0.853 NA
Singular Value Type Rec. (SVTR) 0.740 NA NA 0.884 NA
Conj. Gradient for Normal Eq. (CGNE) 0.842 [109] 0.860 [109] 0.901
Steepest Descent (SD) 0.841 [109] 0.858 [109]
Steepest Descent-Kaczmarz (SD-K) 0.841 [109] 0.858 [109]
linear Landweber iteration (LIPS) 0.840 [109] 0.860 [109]
linear Kaczmarz-Landweber It. (KLIPS) 0.842 [109] 0.858 [109] 0.897
non-linear LIPS 0.853 [106] 0.834 [106]
non-linear KLIPS 0.853 [106] 0.826 [106] 0.903

Table 7.4: Reconstruction quality of selected reconstruction algorithms for the METIS
(SCAO) and EPICS (XAO) instrument of the ELT using pyramid sensors with or
without modulation. We took telescope spiders into account for 2 simulations. The
P-CuReD results for segmented pupils were obtained within the Split Approach (cf
Chapter 8). The fields are left empty if no simulations were performed and “NA“
means that the method is not applicable to this setting.

Chapter 4 - 6 in more depth, were experienced to provide accurate, robust and stable
wavefront reconstruction for the pyramid wavefront sensor without modulation.
The mentioned approaches were, in particular, tested on non-segmented pupils for a
pyramid wavefront sensor acting in its linear regime, e.g., in closed loop AO. One
reason for starting to investigate non-linear approaches for wavefront reconstruction
using pyramid sensor data was the presence of large non common path aberrations
(NCPAs) on ELTs which affect the nonlinearity issue of the pyramid sensor. For large
NCPAs, the linearity of the pyramid sensor may be violated and a usage of a non-
linear reconstructor can become of great benefit. However, the results of non-linear
LIPS and KLIPS are rather preliminary. Detailed studies in the future shall bring
a better understanding of the nonlinearity effects of the sensor and, based on that,
improvements of the methods itselves (cf Chapter 6).
Moreover, METIS simulations demonstrated that variants of zonal interaction-matrix-
based MVM approaches and the P-CuReD coupled with a Direct Segment Piston Re-
constructor provide (almost) differential piston-free wavefront estimates for fragmented
telescope pupils, a phenomenon that has an especially big impact on ELT-sized tele-
scopes with details studied in the next Chapter.
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Chapter 8

Accurate wavefront reconstruction
in the presence of telescope spiders

The new generation of Extremely Large Telescopes with mirror diameters up to 40
meters has thick secondary mirror support structures also known as spiders which
cause difficulties in the wavefront reconstruction process. These spiders create areas
where the information of the phase is disconnected on the wavefront sensor detector
leading to pupil fragmentation and a loss of data on selected subapertures. The effects
on wavefront reconstruction are differential pistons between segmented areas leading
to extremely poor wavefront reconstruction. The resulting errors make the majority
of existing control algorithms unfeasible for telescope systems having spiders incorpo-
rated. A solution, named the Split Approach, is presented, which suggests to separate
reconstruction of segment piston modes from the rest of the wavefront. Further, two
methods are introduced for the direct reconstruction of the segment pistons. Due to the
separate handling of the piston offsets on the segments, the Split Approach makes any
of the existing phase reconstruction algorithms developed for non-segmented pupils
suitable for wavefront control in the presence of telescope spiders.
The content of this Chapter relies on a joint work with Iuliia Shatokhina, Andreas
Obereder, and Ronny Ramlau presented in [110, 149].

8.1 Differential piston effects induced by telescope
spiders

The pupils on the ELT-generation telescopes are inevitably segmented and partially
shaded by thick support structures as shown in Figure 8.1. Due to small subapertures,
the spiders lead to a fragmentation of the pupil into several disjoint segments and cover
partially or even completely up to several subapertures. If a wavefront sensor provides
only local information about the wavefront, as the Shack-Hartmann does, some gradi-
ent information is lost in case the sensor data is segmented into disconnected domains.
An exact reconstruction of low-order modes is impossible. Differential pistons between
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Figure 8.1: ELT pupil mask with spiders, source [110, 149]. The ELT will consist of a
39.3-meter-diameter primary mirror and a 4.2-meter-diameter secondary mirror which
will be supported by 6 spiders each being 50 cm thick.

the segments are not seen by the sensor and can therefore not be controlled [21]. Hence,
it is necessary to choose a wavefront sensor that can provide wavefront information
which is spread globally across the whole pupil. As such, the pyramid wavefront sen-
sor [164] is planned to be part of many instruments currently under development for
ELT-sized telescopes.
Numerous end-to-end simulations performed with various reconstruction algorithms
(summarized in Sections 8.2.5 and 8.3.2), however, have shown that even using the
global-type wavefront sensor does not automatically lead to correct reconstructions
of segmented pistons with an arbitrary reconstruction algorithm designed for non-
segmented annular apertures. Many of the known methods fail, meaning that the
residuals contain randomly appearing uncontrolled piston modes on the segments also
known as island effect. The consequence is a significantly reduced correction quality in
terms of Strehl ratio, PSF, and contrast. In addition to pupil segmentation, another
challenge that wavefront reconstruction algorithms for the ELTs have to tackle with
is the high number of correcting elements that need to be controlled in real-time.
Having these two points in mind, in Section 8.2 and Section 8.3 we give an overview of
the available algorithms and their readiness / ability to operate both fast and stable
with high quality on ELTs. The reconstructors we will be dealing with are using
different forward models of the pyramid wavefront sensor or its approximations, a fact
that turns out to be crucial under pupil fragmentation. The analysis is performed in
the context of the METIS instrument [24] on the ELT containing a SCAO system with
74× 74 WFS subapertures. The geometry of the planned ELT M4 deformable mirror
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is taken into account. The thickness of the 6 secondary mirror support structures is
50 cm and coincides with the subaperture size.
On the one hand, as shown in Section 8.2.5, the current status of the performed sim-
ulations tells that among all possible variants of the interaction-matrix-based MVM
methods at least one, the minimum variance reconstructor using a zonal interaction
matrix and Laplacian regularization, is able to provide a stable control of the seg-
mented low-order modes. However, the well-known drawback of any MVM method is
the related computational load. Though for the considered SCAO system the real-time
application of matrix-vector multiplication is still doable, it is hardly feasible in case
of the planned XAO system having tens of thousands correcting elements to control.
On the other hand, as presented in Chapter 4 - 7 and briefly reviewed in Section 8.3,
there exists a variety of interaction-matrix-free, model-based wavefront reconstructors
developed for pyramid wavefront sensors in the recent decade, all of them being sig-
nificantly faster than MVM approaches. For instance, the fastest method available,
the P-CuReD [191, 195, 198], has only a linear complexity O(na), while any MVM is
of complexity O(Nna) with N denoting the number of active subapertures and na the
number of active actuators. However, since those methods were developed such that
they are intrinsically using the approximate forward models of the sensor not including
segmented pupils, these methods fail when being applied straightforward to segmented
sensor data. In Section 8.3.2 we additionally mention several attempts for wavefront
reconstruction on segmented pupils that unfortunately do not yield the expected per-
formance. Therefore, in the presence of spiders, model-based wavefront reconstruction
algorithms need to be adapted in order to handle the differential pistons between the
pupil segments.
As a solution allowing for both high-quality and high-speed wavefront control we sug-
gest in Section 8.4 a hybrid scheme. This approach combines the advantage of the
interaction-matrix-based methods of being able to handle pupil segmentation and the
advantage of the model-based reconstructors of being incredibly fast. The solution,
named the Split Approach, treats the reconstruction of segmented pistons separately
from the higher-order modes (or frequencies). Here, the piston-free wavefront re-
construction on segments is provided by some fast model-based algorithm, e.g., the
P-CuReD, as described in Section 8.4.1. In parallel, the segment pistons are recon-
structed from the same sensor data with an interaction-matrix-based MVM approach.
Since for the direct segment piston reconstruction we are only interested in the modes
of order zero, the computational load can be significantly reduced.
In Section 8.4.2 we demonstrate two possibilities towards the formulation of the direct
piston reconstruction for segmented pupils. The first one employs the usual setting of
the full zonal interaction matrix using a set of dedicated basis functions representing
the wavefront. This big matrix is then inverted via standard techniques of regular-
ization and the resulting intermediate control matrix is afterwards reduced to a new,
small sized, control matrix relating the sensor data with the vector of segment pistons
having only as many entries as pupil segments. Though still requiring the computa-
tionally expensive setting up and inversion of a dense matrix, which can be performed
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off-line, the online calculations have linear complexity O(na) and are very cheap. In
the second approach for direct segment piston reconstruction, the initial interaction
matrix is formulated in the basis of segment pistons and is therefore very small from
the start. Resulting in the same number of computations to be performed online, this
approach is, in addition, free from the time-consuming (offline) operations involved in
the first approach.
In combination with the P-CuReD, both direct segment piston reconstruction methods
have an overall computational effort which scales linearly. In Section 8.5 we illustrate
the performance of the Split Approach employing the two proposed methods for direct
piston reconstruction for segmented pupils with end-to-end closed loop simulation
results.

Let us denote the model of the pyramid sensor by an operator P : H11/6(R2)→ R2N ,
which maps real-valued H11/6-functions (wavefronts, residual phases) to a vector of
discrete measurements of length 2N . The measurement process is given by

~s = P Φ + ~η, (8.1)

where Φ describes the incoming phase, ~s =
~sx
~sy

 pyramid sensor measurements, and

~η the noise in the data. The Inverse Problem is to reconstruct the wavefront Φ from
given noisy sensor data ~s. Throughout this Chapter, we assume the pyramid sensor
to operate in closed loop AO, i.e., to be linear.

Due to the global response, the PWFS is able to sense the differential pistons, which
has been successfully demonstrated in the laboratory [66, 70], supported by numerical
simulations, and validated on sky under seeing-limited conditions [71]. The ability of
the PWFS to sense the differential pistons of a segmented mirror and correct for it with
an inversion based on the singular value decomposition of the measured interaction
matrix was first demonstrated in numerical simulations in [62]. Among all in [201]
tested WFS types, the PWFS takes the most sensitive measurements of the differential
pistons on the segments. Apart from that, compared to the Shack-Hartmann WFS
the PWFS provides an increased sensitivity which leads to higher limiting guide star
magnitudes and higher sky coverage [64].
The interaction-matrix-based MVM methods are intentionally described in Section 8.2
with a much higher level of detail compared to the model-based algorithms in Sec-
tion 8.3. As it was already done in more detail for the model-based reconstructors,
which turned out to struggle under the circumstances of pupil fragmentation, in Chap-
ter 4 - 7, we now aim at detailed descriptions of existing MVM-based methods. The
focus of this Chapter is to study, compare, and understand the behavior of different al-
gorithms under pupil fragmentation. As a result of these efforts, the current Chapter
serves partially as a review of the currently available MVM-based wavefront recon-
struction algorithms for pyramid wavefront sensors and, in particular, of the present
status in the performance those reach on the ELT-era instruments under design.
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The connection between incoming wavefronts Φ, residual wavefronts Φres and the
mirror shape ϕ in an AO system is given by

Φres = Φ + ϕ.

Since for ideal compensation the residual wavefront Φres should be equal to zero, the
optimal choice for the DM shape is

ϕ = −Φ.

For the control of deformable mirrors one needs to know either the mirror actuator
commands or the shape of the incoming wavefront provided as the solution of the
Inverse Problem (8.1) for Φ.

8.2 Interaction-matrix-based reconstructors
In this Section, we analyze the applicability and performance of the so called interaction-
matrix-based MVM methods for PWFS data and fragmented pupils. These methods
involve a registration (or computation) of a WF-to-WFS interaction matrix, its inver-
sion and a subsequent multiplication of the obtained control matrix with a vector of
sensor data. In the literature there have been many variants of interaction-matrix-
based MVM approaches presented: statistical estimation or solution in a least-squares
sense; zonal or modal control approaches (i.e., the degrees of freedom are actuators
or modes). The presented overview aims to summarize and compare the performance
of existing interaction-matrix-based MVM methods in case of PWFS data fragmented
by spiders. In Section 8.2.1 the generation of a WF-to-WFS interaction matrix is de-
scribed, and the option of coupling or decoupling this step with the DM is explained in
Section 8.2.2. In Section 8.2.3 the simplest least-squares approach and its regularized
inversion are specified, while Section 8.2.4 deals with more sophisticated statistical ap-
proaches. Finally, the quality and speed performance of the interaction-matrix-based
MVM algorithms are summarized in Section 8.2.5.

8.2.1 Generating the interaction matrix
We introduce (hi) as a set of arbitrary basis functions to represent the wavefront, (hmi )
as a set of modal/global basis functions, and (IF ) denotes the DM influence functions
(cf Section 2.4.4). In order to create the interaction matrix of the system, we need
to relate the incoming wavefront with the output (measurements) of the PWFS. We
represent the incoming wavefront Φ using a set of basis functions (hi). Thus, Φ can
be approximated by

Φ(x, y) =
nc∑
j=1

cjhj(x, y), (8.2)

where nc indicates the number of used basis functions.
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The interaction matrix M ∈ R2N×nc is then given by

M =
(
~s1 ~s2 · · · ~snc

)
, (8.3)

i.e., the measurements

~si =
~sx(hi)
~sy(hi)

 = P (hi) for i = 1, 2, . . . , nc (8.4)

corresponding to the basis function hi build the i-th column of the interaction matrix.
The obtained measurements in x- and y-direction are arranged in vectors ~si ∈ R2N .
The sensor equation, as already mentioned, reads as

~s = P Φ + ~η

To reconstruct the incoming (residual) wavefront Φ the matrix M has to be “inverted“
and applied to the measurements. This step is represented by

~c = M †~s

with ~c = (ci)i=1,...,nc .
After the reconstruction step, one has to derive the corresponding actuator commands
~a = (ai)i=1,...,na from the reconstruction Φ, i.e., solve

Φ(x, y) =
nc∑
j=1

cjhj(x, y) =
na∑
j=1

ajIFj(x, y). (8.5)

If the chosen basis hi coincides with the influence functions of the deformable mirror,
the vectors ~c and ~a are the same.

8.2.2 Working with DM influence functions
Often, the interaction matrix inversion is coupled with the DM in the sense that for
the generation of an interaction matrix one creates a certain (zonal or modal) shape
with the DM, which is then sensed by the wavefront sensor. In this approach one is
restricted to wavefront shapes which can be represented by the DM, i.e., are a linear
combination of the DM influence functions

Φ(x, y) =
na∑
j=1

ajIFj(x, y) (8.6)

or of DM modes
Φ(x, y) =

nc∑
j=1

cjh
m
j (x, y) (8.7)

and
hmj (x, y) =

na∑
l=1

mj
l IFl(x, y)
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with actuator commands
(
mj
l

)
. This results in

Φ(x, y) =
nc∑
j=1

cjh
m
j (x, y) =

nc∑
j=1

cj
na∑
l=1

mj
l IFl(x, y).

Combining (8.1) with (8.6) or (8.7) produces a DM-to-WFS interaction matrix, which
relates the sensor measurements ~s directly with the command vectors,

~s = P Φ + ~η = P

 na∑
j=1

ajIFj

+ ~η =
na∑
j=1

ajP (IFj) + ~η =: M IF~a+ ~η,

or

~s = P Φ + ~η = P

 nc∑
j=1

cjh
m
j

+ ~η =
nc∑
j=1

cjP
(
hmj
)

+ ~η =: Mm~c+ ~η,

assuming a linear response of the pyramid sensor. In, e.g., the approaches presented
in Chapter 4 - 6 or the P-CuReD, which are more general, the steps of wavefront
reconstruction and projection to the DM are decoupled. One is not limited to using
only the DM influence functions or modes. The wavefront is reconstructed on an
arbitrary grid and afterwards either projected on the telescope specific DM or evaluated
at the actuator positions.

8.2.3 Deterministic setting
Let us start with considering the inversion of the interaction matrix in a deterministic
setting.

Least-squares pseudo-inverse

The least-squares problem
~c = argmin

~c
||M~c− ~s ||22

of finding the best wavefront fit ~cLS to the given WFS data vector ~s is uniquely solved
by the least-squares minimum norm solution given as the Moore-Penrose generalized
inverse

M † = (MTM)−1MT .

Such a pseudo-inversion of the interaction matrix is considered to be the simplest re-
construction algorithm possible. Historically, least-squares with zonal representation
was the first approach applied to the wavefront reconstruction problem involving the
Shack-Hartmann wavefront sensor [81]. For wavefront reconstruction using pyramid
wavefront sensor measurements, the least-squares approach allows to reach high cor-
rection accuracy without regularization, at least if the number of degrees of freedom
is not very high. With the pyramid wavefront sensor, the least-squares reconstructor
has provided reasonable results on small scale systems having up to 30× 30 subaper-
tures within an 8 m telescope diameter as it was demonstrated in [67] with modal DM
control using Karhunen-Loève (KL) polynomials.
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Regularized least-squares pseudo-inverse

For large-scale AO systems or more sophisticated configurations like MCAO the cor-
responding system matrices have large condition numbers and are difficult to invert.
In this case the conventional least-squares reconstructor performance is not satisfac-
tory, and a special treatment is required in the form of a regularization or filtering of
unstable modes.
Sensor noise is modeled as a random process obeying zero-mean Gaussian statistics,
η ∼ N (0, Cη = σ2I), Cη ∈ R2N×2N , where σ2 denotes the sensor noise variance.
The noise-covariance-weighted least-squares (also known as minimum norm maximum
likelihood [14]) reconstructor, which minimizes

~c = argmin
~c
||M~c− ~s ||2C−1

η
,

allows one to take the stochastic measurement uncertainties into account. The solution
is given by

M †
η = (MTC−1

η M )−1MTC−1
η .

The pseudo-inverse can be computed using the eigendecomposition of MTC−1
η M or

the singular value decomposition of C−1/2
η M . In practice such decompositions are

related with expensive computations and small computation errors in eigen- or sin-
gular values lead to instabilities in the reconstruction due to noise amplification. As
a regularization method, in the truncated SVD (TSVD) one filters out the modes
corresponding to singular values smaller than a given parameter α > 0.
Alternatively, a similar effect is achieved by Tikhonov regularization, well-known in
the field of Inverse Problems [218]. For solving the Inverse Problem (8.1) we consider
the least-squares problem

~c = argmin
~c

{
||M~c− ~s ||22 + α || ~c ||22

}
.

Then, the regularized pseudo-inverse is derived by

M †
α =

(
MTM + αI

)−1
MT (8.8)

with a Tikhonov regularization term consisting of a regularization parameter α > 0
and the identity matrix I.
For (relatively) small scale systems having up to 30 × 30 subapertures on an 8 m
telescope, high correction quality has been achieved with both an SVD-regularized
zonal [63] and modal least-squares reconstructor using Zernike polynomials [65] or KL
polynomials [68, 69, 158].
Due to noise propagation, the least-squares wavefront reconstruction algorithm per-
forms poorly for large-scale or laser guide star based AO applications [55, 105]. Hence,
there has been a tendency observed in the AO community to prefer the regularized
variants of interaction-matrix-based MVM methods taking atmospheric statistics into
account.
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8.2.4 Bayesian setting
With σ2 denoting the sensor noise variance, wavefront shapes and sensor noise are
independent random processes obeying zero-mean Gaussian statistics, Φ ∼ N(0, CΦ),
η ∼ N(0, Cη = σ2I), CΦ ∈ Rnc×nc , Cη ∈ R2N×2N within a stochastic context. Such a
point of view allows one to use in the reconstruction the prior knowledge of the atmo-
sphere and measurement noise statistics, expressed with the corresponding covariance
matrices Cφ and Cη, in order to regularize or stabilize the solution.
Two Bayesian statistical approaches, both using a prior probability density assumed on
the phase, have been applied to the problem of wavefront reconstruction from sensor
data — minimum variance estimation and maximum a posterior (MAP) estimation.
The minimum variance (or minimum mean-square error (MMSE)) estimator minimizes
the variance of the phase estimation error. The maximum a posterior (MAP) estimator
identifies the most likely value of Φ given the observed data ~s and prior knowledge
on the distribution of Φ. As wavefront reconstruction deals with zero-mean Gaussian
signal and perturbation, the minimum variance reconstructor providing the minimal
MSE coincides with the MAP reconstructor [14, 204].
In the Bayesian setting, the measurement vector ~s is a function of the atmospheric
turbulence profile. The sensor equation (8.1) using the representation of the wave-
front (8.2) formulated in terms of arbitrary coefficients ci ∈ R, in the stochastic setting
is formulated in terms of wavefront coefficients φi ∈ R as

~s = P Φ + ~η = P
nc∑
i=1

φihi + ~η =
nc∑
i

φiPhi + ~η =
nc∑
i

φi~si + ~η = M~Φ + ~η

The aim in this setting is to compensate the turbulence-induced wavefront error.
The minimum variance / MAP reconstructor minimizes the penalized noise-weighted
least-squares functional

~Φ = argmin
~Φ

{∣∣∣∣∣∣M~Φ− ~s
∣∣∣∣∣∣2
C−1
η

+ µ0

∣∣∣∣∣∣ ~Φ ∣∣∣∣∣∣2
C−1

Φ

}
, (8.9)

which can be seen as an estimator regularized with a Tikhonov term µ0

∣∣∣∣∣∣ ~Φ ∣∣∣∣∣∣2
C−1

Φ
. The

weighting parameter µ0 allows one to balance between fitting to the data and the prior
statistics. The corresponding regularized normal equation is

(MTC−1
η M + µ0C

−1
Φ )~Φ = MTC−1

η ~s

and the MAP reconstruction is given by

~Φ = M †
MAP~s

with control matrix M †
MAP

M †
MAP = (MTC−1

η M + µ0C
−1
Φ )−1MTC−1

η .
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Note that besides the pseudo-inverse, there exist several other methods based on the
above normal equation for solving the Inverse Problem. The inverse of the phase
covariance C−1

Φ must be chosen such that it is physically realistic. Typically, because
of singularities (or ill-conditioning) in the turbulence spectra, it is inevitable to assume
some discrete approximation on C−1

Φ and an additional regularization, which results
in some loss of accuracy but yields stability [55].
With the MAP / minimum variance estimators two kinds of errors are related: the
approximation error that tells how well the reconstructor approximates the inverse of
the sensing operator P , and the noise propagation error related to sensor noise. The
sources of the model error are the chosen basis representation of the wavefront and
the accuracy of the a priori statistical knowledge of the atmosphere.
A statistical estimation method necessarily needs regularization parameter tuning for
an accurate wavefront reconstruction. The numerical simulations indicate that the
MAP / minimum variance reconstructor with an optimized parameter µ0 performs
better (is more stable) than the (noise-weighted) least squares solution [37, 142].
In the following, we briefly focus on the implementation details of two variants of
Bayesian reconstructors that proved to be efficient in astronomical AO.

MAP reconstructor with modal control of the DM

The modal MAP wavefront reconstructor, as described in [36, 128, 142], uses a modal
control of the DM allowed by the construction of the interaction matrix Mm utilizing
the first nc atmospheric Karhunen-Loève (KL) polynomials (Kdm

i )1≤i≤nc defined on
the telescope pupil Ω. The number of considered modes nc is typically chosen smaller
or equal to the number of actuators in the DM. The command vector ~mi ∈ Rna is
defined such that the DM shape produced by this command is the closest to the i-th
mode Kdm

i . This is done by minimizing [178]

~mi = argmin
~m


∫
Ω

(
Kdm
i (x, y)−

na∑
l=1

mlIFl(x, y)
)2

d(x, y) : ~m ∈ Rna

 ,

where the coordinates (x, y) describe a point in the pupil plane and IFl describes the
influence function of the l-th actuator. Afterwards, a KL polynomial-based interac-
tion matrix Mm is constructed by applying to all DM actuators the pre-defined ~mi

commands.
In this method, CΦ in (8.9) is the von Karman wavefront covariance matrix restricted
to the modal space of the DM. The parameter µ0, which scales as the inverse of the
square of the signal-to-noise ratio, allows to weight the sensor noise and atmospheric
priors in a flexible way.
This reconstructor is, e.g., implemented in Octopus [129, 130, 142].
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Zonal minimum variance estimator with regularized sparse
approximation of CΦ

Another variant of MVM that provides high-quality reconstruction is the zonal mini-
mum variance estimator using a regularized sparse discrete approximation of C−1

Φ , as
suggested in [55], by

C−1
Φ = 1

c0
L2, (8.10)

where L denotes a discrete Laplacian matrix approximating the Laplacian operator.
The constant c0 is physically interpreted as the strength of the turbulence and addi-
tionally normalizes the approximation of CΦ in order to fit the von Karman turbulence
spectrum [12, 55].
Using this covariance approximation corresponds to regularization by the l2-norm of
the Laplacian, i.e., to solving the penalized least-squares functional

argmin
~Φ

{∣∣∣∣∣∣M~Φ− ~s
∣∣∣∣∣∣2
C−1
η

+ µ0

c0

∣∣∣∣∣∣ L~Φ
∣∣∣∣∣∣2

2

}

with regularization term µ0
c0
|| LΦ ||22 that removes waffle mode and other high fre-

quency errors in the phase estimates [12].
This reconstructor using DM influence functions as basis functions is incorporated
in YAO, an open-source AO simulation tool written in yorick [171]. For the current
study we have also implemented it in Octopus. In the numerical implementation, sta-
bilization with respect to the wavefront sensor noise is performed by filtering out the
columns in the registered interaction matrix corresponding to basis functions whose
WFS response was smaller than a certain predefined value (e.g., expressed in a per-
centage of the maximum registered response). This parameter can be tuned in order
to optimize the performance of the reconstructor for different flux settings or spider
thickness. Note that in the numerical simulations, the parameter c0 is heuristically
tuned as well for various atmosphere strengths and guide star fluxes.

8.2.5 Performance of interaction-matrix-based MVM in pres-
ence of spiders

Quality

Earlier it was already shown in the context of EPICS, the XAO instrument on the ELT,
that interaction-matrix-based MVM reconstructors for pyramid wavefront sensors are
indeed able to solve the pupil fragmentation problem in case of 4 thick spiders [122].
It was reported in the paper that both the zonal and modal reconstructors provide the
same quality in the presence of 4 spiders. Apart from that, two important points were
underlined: the light behind spiders needs to be used in the reconstruction; and the
amount of modulation should not be too large, otherwise the sensor loses its sensitivity
to low-order modes.
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Now, we report on the performance we obtained with two variants of Bayesian re-
constructors described above in the presence of spiders. Recall that we consider the
METIS instrument on the ELT here.
The zonal minimum variance reconstructor that we implemented in Octopus gives an
LE Strehl ratio of about 0.894 for simulations with the ELT spiders and the real ELT
M4 geometry.
In the corresponding Octopus simulation without spiders, the modal MAP reconstruc-
tor achieves the same LE Strehl ratio of 0.89. However, in contrary to the zonal
approach, its performance in the presence of spiders is not as good. After running
multiple tests over a set of tuning (regularization) parameters, the best LE Strehl ra-
tio that we were able to achieve is 0.859. In the residual screens we always observed
uncompensated random segmented pistons. Note that in order to obtain the more or
less reasonable results, one has to set the illumination parameter close to 0.45 and use
data from the subapertures partially covered by the spiders. If one does not use this
information, the reconstruction is worse as also investigated in [59].
YAO simulation results obtained for the METIS case with the zonal minimum variance
reconstructor are summarized in [102]. To give an idea to the reader, we mention here
the YAO results obtained for a median atmosphere, on-axis correction and high photon
flux. In this setting the LE Strehl ratio of 0.89 is obtained both without and with
spiders. Hence, this reconstructor handles the spiders well.
Please note that the modal MAP result from Octopus and the zonal reconstructor
results from YAO were obtained using a regular Fried geometry instead of the real
ELT M4 geometry.

Speed

Interaction matrix inversion is related to a high computational load. Assuming that an
interaction-matrix-based MVM algorithm is implemented using conventional matrix
inversions and matrix-vector multiplications, the computation of the control matrix
scales as O(n3

a) and its application as O(Nna) [55]. Clearly, the computational com-
plexity becomes a significant limitation of these approaches if the values of na are of
order 10000 as currently under consideration for XAO systems on ELTs.

8.3 Advanced model-based reconstructors

In Chapter 4 - 7 we have already given an overview on several novel algorithms that
have been developed based on the mathematical analysis of the forward models of
the PWFS. The main feature of these algorithms is a low computational complexity
resulting in an adequate handling of wavefront reconstruction on AO systems in real-
time and still guaranteeing high-quality and robustness of the methods.
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Algorithm Modulation Complexity
no small large

interaction-matrix-based MVM + + + O(n2
a)

FHTR, SVTR + – – O(n3/2
a )

iterative methods + + + O(n3/2
a )

CLIF + + + O(n3/2
a )

PFTR + + + O(na logna)
P-CuReD + + + O(na)

Table 8.1: Comparison of some currently existing algorithms for wavefront recon-
struction from pyramid sensor data in terms of their flexibility and computational
complexity.

8.3.1 Quality and speed performance of model-based recon-
structors without spiders

Table 8.1 provides a comparison of some wavefront reconstruction algorithms for pyra-
mid sensors in terms of their computational complexities. From the Table one can see
that all recently developed model-based reconstruction algorithms require much fewer
computations to be performed than any MVM approach. Especially remarkable is
the P-CuReD method which has a linear complexity. For a detailed comparison of
the methods with respect to the reconstruction quality we refer to the corresponding
publications and Chapter 4 - 7. As a brief summary, we mention that in closed loop
simulations all the model-based methods achieve good quality depending on the at-
mosphere used in test cases. The fastest method available, the P-CuReD, reaches the
highest quality results in a variety of tested conditions. Additionally, the high recon-
struction quality obtained with the model-based reconstructors for the non-modulated
sensor is notable.
Another point we would like to stress here is that the model-based reconstructors are
free from the time-consuming precomputation of matrices and fine tuning of the reg-
ularization parameters associated with MVM approaches. Since there are no intrinsic
regularization parameters necessary to consider during the reconstruction process, no
optimization is needed if atmospheric conditions change. This is a great advantage of
the model-based reconstruction algorithms, as confirmed by the AO simulation tools
users outside our group. For instance, in [36, 41] the authors performed end-to-end
simulations and compared the performances of the modal MAP reconstructor imple-
mented in Octopus with the P-CuReD method for XAO settings. Apart from that,
the CuReD method, which was originally developed for the Shack-Hartmann sensor
[179, 180] and also constitutes a part of the P-CuReD method for pyramid sensor, has
been successfully tested on-sky [15]. In the named cases, the authors underlined the
ease of usage of those algorithms compared to other approaches.
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8.3.2 Adapting advanced reconstructors to segmented pupils
Let us describe our first approaches to overcome the difficulties caused by pupil frag-
mentation or spider effects when the width of the spiders is no longer negligible com-
pared to the size of the subapertures. Numerical investigations were performed for
the ELT having a primary mirror divided into 6 segments as shown in Figure 8.1.
As reconstruction method we use the P-CuReD algorithm. Almost as important as
the width of the spiders is their placement. If the spiders are parallel to the x- and
y-axis, some basic attempts described in the following succeed, while for arbitrarily
located spiders we examine poor wavefront reconstruction suffering from differential
piston influences. Although one can theoretically investigate support structures of
secondary mirrors situated parallel to the axes, this assumption will not be fulfilled in
reality due to unpreventable misalignment. Please note that the following attempts
for wavefront reconstruction in the presence of telescope spiders were only investigated
with application of the P-CuReD algorithm. Different reconstruction algorithms may
behave differently.

One idea is to make the illumination factor necessary for the usage of subapertures
for wavefront reconstruction very low, i.e., utilizing (almost) all available subapertures
for reconstruction, also those being less illuminated. This method combined with the
reconstruction algorithm P-CuReD does not lead to success since the light suffers from
obstruction effects especially at the boundaries of the pupil segments. The wavefront
reconstruction is adversely influenced on the whole pupil by differential piston effects.
However, an appropriate choice of the illumination factor is crucial as, e.g., investigated
in [59].

Another approach to overcome the effects of pupil segmentation is data interpolation or
interpolation of the reconstructed phase under the spiders. Instead of using defective
measurements under the spiders provided by the pyramid sensor we generate data
or reconstructions artificially in these areas. For that purpose we considered bilinear
and spline interpolation. Unfortunately, these approaches do not eliminate differential
piston effects.

A more sophisticated attempt incorporates the pyramid sensor model in the mea-
surement continuation process by applying iterative measurement extension methods
as, e.g., the approach presented in [20] or the idea already introduced in Section 4.3.1
which was originally developed for wavefront reconstruction on annular, non-segmented
telescope pupils. The basic concept is to generate artificial but pyramid related data
under the spiders by application of the finite Hilbert transform which is a simplification
of the Fourier optics based pyramid sensor model. Thus, the provided data correspond
better to pyramid measurements as it is the case for a general interpolation procedure
described above. However, the simulation results are quite similar to the approach
using bilinear or spline interpolation, differential piston effects are developing within
time and make the reconstruction poor.
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An additional experiment is to replace the obstructed data by zeros, i.e., it is assumed
that the wavefront is planar in the areas obstructed under the spiders. Note that zero
padding is successfully used for the central obstruction induced by a secondary mirror
for some of the reconstructors mentioned in this Thesis, e.g., the SVTR. In contrast
to obstruction induced by spiders, a central obstruction does not cause segmented
mirrors and hence does not induce differential pistons. Several numerical simulations
show that the results of this approach differ significantly for different spider locations.
In particular, if one considers 4 paraxial spiders (as those first investigated for Shack-
Hartmann sensors in [21]), the zero padding approach gives satisfying reconstruction
quality with the pyramid sensor. Considering the 6 ELT spiders, the approach again
suffers from differential piston development as shown in Figure 8.2.

Figure 8.2: Residual screen in radians (evaluated in the K-band) for the “padding
with zeros under the spiders” approach, source [110, 149]. Attempts like measurement
continuation, interpolation of data or the reconstructed phase as well as reconstruction
using the light under the support structures deliver similar poor results.

Approaches like jump minimization between the segments by boundary integral cou-
pling do bring quality improvements but not as high as we have hoped for. For
Shack-Hartmann sensors, this method will precisely be described in an upcoming pa-
per of our group. Actuator coupling/slaving of those actuators that are situated at
the boundary of spiders is a hot topic for pyramid sensors on ELTs, especially for
wavefront sensing at shorter wavelengths than the K-band (cf, e.g., [187, 188, 189]).

Altogether, the above described methods do not satisfactorily handle the impact of
1 or 2 subaperture thick spiders on the wavefront correction performance. However,
after trying all the described methods, a new way for successfully eliminating spider
obstruction effects was found. The idea is to reconstruct the segmented piston modes
separately from other frequencies in the wavefront. Within these attempts, which we
recap as Split Approach, one can still use the fast interaction-matrix-free wavefront
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reconstruction algorithms presented in Chapter 4 - 7 and at the same time obtain
stable wavefront correction in the presence of spiders.
In the next Section, we introduce the basic concept of the Split Approach and two
different algorithms tested for direct segment piston reconstruction. Due to the high-
end performance of the P-CuReD, both in terms of quality and speed, we choose this
method as one of the components in the Split Approach aimed at segment-piston-free
reconstruction of the wavefront for segmented pupils.

8.4 Split Approach
We introduce robust algorithms that allow to compute optimal mirror configurations
from signals containing telescope spider obstruction by dividing the wavefront recon-
struction into two parts:

1. Piston-free wavefront reconstruction on each segment: This wavefront recon-
struction method handles all modes seen by the PWFS except modes of order
zero (piston modes) on each segment.

2. Direct segment piston reconstruction: Here, we focus on modes of order zero on
each segment solely.

The reason why we suggest to split piston reconstruction from the full phase recon-
struction is twofold. On the one hand, we want to make stable wavefront reconstruc-
tion in the presence of spiders feasible with the fast model-based algorithms presented
in Chapter 4 - 7. Those algorithms were developed using the forward model of the
sensor for annular apertures that do not include segmented pupils and spider effects.
Straightforward attempts as described in Section 8.3.2 of applying these algorithms to
sensor data “spoiled ” by spider obstruction failed so far. On the other hand, it was
recognized that the interaction-matrix-based approaches, as described in Section 8.2,
are able to correct for differential pistons, but are very time-consuming. The related
computational effort may be affordable for the METIS system, but hardly feasible
for XAO systems. Therefore, our goal was to combine the P-CuReD (or any other
fast model-based wavefront reconstruction method) and the advantages of interaction-
matrix-based reconstruction to obtain a fast and robust reconstruction approach for
segmented pupils having less computational complexity than an MVM.

We recall that P describes the pyramid sensor operator, Φ the incoming phase, and
~s pyramid sensor measurements. Usually, all wavefront modes (frequencies) that are
seen by the pyramid wavefront sensor and afterwards corrected, are treated within
the same wavefront reconstruction process. In the Split Approach, we separate the
incoming wavefront Φ into the parts

Φ =
k∑
i=1

Φi + pi,
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where Φi indicates the piston-free wavefront reconstruction on segment Ωi. The cor-
responding reconstruction procedure denoted by P̃

† is given by any of the existing
model-based algorithms which provide high-quality reconstruction on each segment.
The term pi describes the corresponding piston information on every segment for
i = 1, 2, . . . , k calculated independently using direct segment piston reconstruction
methods that will be described in Section 8.4.2 and are in the following denoted by
Π.

Hence, we separate the whole wavefront reconstruction into two parts

Φ = Φpistonfree + Φpiston = P̃
†
~s+ Π~s,

which is feasible in closed loop AO for an almost linear pyramid sensor response [28,
212].

8.4.1 Piston-free wavefront reconstruction on segments
Let us first focus on piston-free wavefront reconstruction on segments. For the esti-
mation of the wavefront Φpistonfree we can use any of the existing fast model-based
wavefront reconstruction algorithms described in Chapter 4 - 7. These methods have
shown exceptional wavefront correction quality on non-segmented pupils, i.e., on the
annular telescope aperture in the following denoted by Ω. The spiders divide the aper-
ture into segments meaning that for k spiders we obtain k disjoint segments indicated
by Ωi, i = 1, 2, . . . k (for instance the 6 spiders of the ELT shown in Figure 8.1). For
segmented pupils, the wavefront reconstruction method P̃

† – in addition to standard
wavefront reconstruction requirements – fulfills two conditions:

1. The method is implemented on segments Ωi, i = 1, 2, . . . , k instead of the full
mask Ω.

2. The reconstruction Φi on every segment Ωi, i = 1, 2, . . . , k needs to be piston-free.

Note that the second condition does not constitute a restriction since one can al-
ways compute the local piston information of a full segment from the reconstructed
wavefront and subtract it afterwards. Condition 1 may possibly be attenuated to
an algorithm being implemented on the full aperture but dividing the reconstruction
into segments thereafter. In this case also the elimination of zero order modes on the
segments can be performed separately from the reconstruction process. However, we
clearly want to point out that we did not investigate this idea in detail. Until now,
we only used a piston-free reconstruction method implemented on the segments. An
analysis of these considerations will be part of a subsequent study.

For the segment-piston-free wavefront reconstruction we use the P-CuReD [191, 195,
198] applied to each segment. With linear computational complexity, this algorithm is
the fastest method available for wavefront reconstruction from pyramid sensor data,
and at the same it provides a reconstruction quality close to the theoretical limits.
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8.4.2 Direct segment piston reconstruction
Now we introduce two methods for direct segment piston reconstruction denoted by
Π providing the piston information (pi)i=1,2,...k on the disjoint segments divided by
k spiders. All of them follow the idea of an interaction-matrix-based reconstruction
using MVM. In contrast to the conventional approach, we now do not focus on the
reconstruction of the complete wavefront, but only on the reconstruction of piston
modes on segments. The first method uses a zonal interaction matrix containing the
sensor response to every single zonal basis function. The second one is rather modal
with a very small number of modes used as basis. Namely, we use a segment basis
consisting of k modes, where each mode depicts a piston on a given segment.

Direct Segment Piston Reconstructor (DSPR) I: Single-Poke-Approach

We start with wavefront reconstruction using a full zonal interaction matrix as already
described in Section 8.2 and transform this algorithms to the reconstruction of segment
pistons solely.

For the so called Single-Poke-Approach, we measure the response of the pyramid sensor
for every basis function. More precisely, we use the full interaction matrix M of the
system as described in (8.3)-(8.4) computed for a set of zonal basis functions. The
amplitude corresponding to the mentioned basis functions has to be small to ensure a
linear response of the pyramid sensor. The control matrix M †

α ∈ Rnc×2N is created as
in (8.8) using Tikhonov regularization with the exception that we use a better suited
Tikhonov matrix instead of the identity matrix. In order to guarantee a stable direct
segment piston reconstruction, an optimal choice of the regularization parameter and,
as already mentioned, of the Tikhonov matrix was experienced to be crucial. A good
choice of the latter turned out to be the squared Laplacian, as described in (8.10).
Since we are only interested in the reconstruction of segment pistons and omit the
reconstruction of other modes, the dimension of the problem is drastically reduced.
Assume we have the complete wavefront ~Φ = M †

α~s reconstructed. Extraction of the
segment piston information ~p = (pi)1≤i≤k from the known wavefront ~Φ is obtained by
averaging the phase values within each segment. This step is modeled as a multiplica-
tion of ~Φ ∈ Rnc with a matrix Q ∈ Rk×nc , where the i-th row of Q contains a vector
representation of the segment Ωi divided by the number of active subapertures on the
segment Ωi (for the averaging). The application of the matrix Q leads to

~p = Q~Φ = QM †
α~s =: Π1~s (8.11)

with a dense but small matrix Π1 ∈ Rk×2N . This means that the piston information on
the segments is reconstructed from the given sensor data with a linear computational
complexity. Hence, we reduce the computationally expensive full interaction matrix
approach with complexity O(Nna) to a cheap direct segment piston reconstruction
method. For a usage of the P-CuReD within the Split Approach the partition of
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wavefront reconstruction into separate piston and higher-order frequencies reconstruc-
tion only slightly decreases the speed of the reconstruction method, which is still faster
as the full interaction matrix approach. Of course, the interaction matrix of the system
still needs to be set up for the application of this direct segment piston reconstruction
method but these calculations are done offline.

Intermediate reconstructions of an Octopus simulation using the Split Approach with
the P-CuReD and the first Direct Segment Piston Reconstructor for wavefront recon-
struction are shown in Figure 8.3.
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Figure 8.3: Illustration of wavefront reconstruction with the Split Approach at the
third time step in an AO loop performed in Octopus, source [110, 149]. The first line
shows an incoming screen given in radians (K-band) and the corresponding pistons
on the 6 segments. The second line shows the segment-piston-free wavefront recon-
struction using the P-CuReD on segments and the DSPR I. In the last line we see the
combination of both, i.e., the whole wavefront reconstruction. The algorithm gives
reasonable reconstructions of the piston-free wavefront as well as the segment pistons.
The simulation parameter correspond to the ones specified in Section 8.5.1.
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Direct Segment Piston Reconstructor (DSPR) II: Segment-Poke-Approach

Inspired by the simple relation (8.11) connecting segment piston values ~p with the
sensor data ~s through a small-size matrix Π1, we want to formulate another direct
segment piston reconstruction approach which will allow us to skip the computationally
expensive and time-consuming step of setting up the full interaction matrix of the
system. Rewriting (8.11) as

~s = Π†1~p

we see that, formally, it is possible to define a new, small interaction matrix of the
system in the basis consisting of only a few segment pistons pi, i = 1, . . . , k.
We again consider arbitrary located secondary mirror support structures consisting of
k spiders, i.e., dividing the aperture into k disjoint segments Ωi, i = 1, 2, . . . , k. The
effects of a piston offset with amplitude c on a single segment are described by

~si = P (c · XΩi(x, y)) for i = 1, 2, . . . , k

with

XΩi(x, y) :=
1, for (x, y) ∈ Ωi,

0, else

denoting the characteristic functions of the telescope aperture segments Ωi. Again we
assume that the pyramid sensor fulfills the linearity assumption if c is chosen small
enough.

Using the data vectors ~si ∈ R2N , ~si =
~s i

x

~s i
y

 for every segment Ωi, i = 1, 2, . . . , k we

obtain a piston interaction matrix M p ∈ R2N×k consisting of

M p =
(
~s1 ~s2 . . . ~sk

)
.

The pyramid response to a segment poke is shown in Figure 8.4. While in the pre-
vious method a very time-consuming precomputation of the full interaction matrix
is required, the matrix necessary for this approach only has dimension 2N × k, and
hence its computation is much cheaper. Therefore, setting up the matrix containing
the WFS response to segment piston modes can be recomputed fast for changing seeing
conditions and readily performed online.

Now, the piston reconstruction on every segment is described as minimization of

min
~p
||M p~p− ~s ||22 + α || Γ~p ||22

for a suitable chosen Tikhonov matrix Γ and regularization parameter α > 0. Solving
the equation in a least squares sense leads to the normal equation

M pTM p~p+ αΓTΓ~p = M pT~s,
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where the right hand side represents a projection of the measurements containing all
modes seen by the pyramid sensor ~s to data M pT~s including piston information only.
Using Tikhonov regularization we obtain the piston control matrix Π2 ∈ Rk×2N for
the direct piston reconstruction on segments. The segment piston ~p ∈ Rk are then
obtained by

~p = Π2~s.

8.4.3 Fast and robust wavefront reconstruction under pupil
segmentation using the Split Approach

The general scheme of the Split Approach for wavefront reconstruction using one of
the above introduced direct segment piston reconstruction methods is described by
the following algorithm:

Algorithm 8.1 Split Approach
choose segment-piston-free wavefront reconstruction method P̃

†

choose direct segment piston reconstruction method Π
for all time steps do
get measurements ~s
for segments i = 1, 2, . . . k do
~Φi = P̃

† (~s )
substract global piston for every ~Φi if necessary

endfor
~p = Π~s
~Φ =

k∑
i=1

~Φi + pi

endfor

The segment piston control matrices Πi, i = 1, 2 are dense but only of dimension
k × 2N which leads to an optimization of the proposed approaches with respect to
computational complexity. The expensive steps can be precomputed offline, thus, the
algorithms scale linearly. This is a clear advantage to the computationally expensive
wavefront reconstruction using full interaction-matrix-based MVM approaches as in-
dicated in Figure 8.5. For a moderately large-scale SCAO system such as METIS, the
gain in the computational efficiency provided by the Split Approach is of order 104. For
an extremely large-scale SCAO system as the planned XAO system the corresponding
gain is of order 105.
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Figure 8.4: Measurements of piston modes, source [110, 149]. Pyramid sensor mea-
surements for a single segment piston mode of height 5 · 10−8 m are indicated. The
first column shows the segment piston, the second and third column illustrate the cor-
responding sensor measurements in x- and y-direction. The measurements are shown
in the range [−1.5 · 10−8, 1.5 · 10−8] m.
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Figure 8.5: Logarithmic plot of the approximate complexities of MVM methods us-
ing the full control matrix (dotted line) and of the Split Approach using any of the
described methods for direct segment piston reconstruction applying the small-size
control matrices (solid line), source [110, 149].

8.5 Numerical validation
For a numerical analysis of the introduced methods, we use the simulation tool Octopus
[129, 130] provided by the European Southern Observatory.

8.5.1 Simulation environment and parameters
As in Chapter 7 we study the mid-infrared ELT imager and spectograph METIS
having a Single Conjugate Adaptive Optics system incorporated. As sensing device,
we simulate a pyramid wavefront sensor having 74×74 subapertures corresponding to
a subaperture size of 0.5 m. The simulation grid size is selected as 740 × 740 pixels
on the aperture resulting in a resolution of 0.05 m per pixel for a 37 m telescope.
Only if a subaperture is illuminated on more than 45 % of the subaperture surface,
the corresponding measurements are used. This means that for the direct segment
piston reconstruction methods sensor data under the two paraxial telescope spiders
are entirely used while the measurements under the four remaining spiders are only
partially utilized. For the piston-free wavefront reconstruction on segments performed
by the P-CuReD we only use data on subapertures which are illuminated more than
75 %. We will provide more details on the illumination factor, which is decisive for the
success of the Split Approach, in the next Section. We consider two different photon
fluxes of 600 and 100 incident photons per subaperture per frame. A key element
of every AO system is the deformable mirror. It provides fast steering capabilities to
compensate for wavefront aberrations caused by atmospheric turbulence and telescope
perturbations in real-time and hence allows to optimize the telescope performance.
The actuator positions of the M4 deformable mirror used in the performed simulations
correspond to the real ELT M4 geometry currently implemented in Octopus and have
already been shown in Figure 2.11. We use the M4 influence functions internally
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incorporated in Octopus. Altogether, we have 3874 active subapertures and 5190
active actuators in use. All test case parameters are summarized in Table 8.2.

8.5.2 Numerical results
A numerical performance analysis and a comparison of the approaches in terms of the
reconstruction quality for the above described simulation environment are provided in
Table 8.3 - 8.5 and Figure 8.6. The three tables present the long-exposure Strehl ratios
evaluated at three different wavelengths λ = 2.2 µm, λ = 3.7 µm, and λ = 10.0 µm
correspondingly. In each of the three tables the test cases cover two photon fluxes
of 600 and 100 photons/subaperture/frame and three zenith angles of 0°, 30°, and
60°. Each Table demonstrates the results obtained with the P-CuReD for a spider-
free simulation as benchmark and the spider effected results obtained within the Split
Approach using each of the DSPR.

From the Tables we see that, compared to the case without spiders, some small loss
in quality is present when pupil segmentation due to spiders is taken into account
and solved with the Split Approach. Moreover, one can see that the loss increases
slowly for larger zenith angles and that the DSPR I provides slightly higher Strehl
ratios compared to the DSPR II. Figure 8.6 showing the corresponding short-exposure
Strehl ratios over the simulation time demonstrates that the DSPR I is indeed more
stable compared to the DSPR II. More precisely, the performance of the two methods
is not identical because phase averaging over the segments and matrix inversion are
interchanged in the DSPR II compared to the DSPR I. As confirmed in Figure 8.7
showing the residual pistons on each segment for the DSPR I, the reconstructions
obtained with the Split Approach are free from large differential piston effects.

Based on the provided reconstruction quality and stability features, the conclusion is
that the DSPR I method is preferable. However, one should keep in mind that in
case the atmospheric or observational conditions change, registration and inversion of
a new interaction matrix will be required. This process is very time-consuming and
may lead to a loss of precious operational time on the telescope. On the contrary, in
the DSPR II method, the underlying interaction matrix is much smaller. Therefore
significantly less operations are needed for its registration and inversion. Since the
DSPR II method provides acceptable reconstruction quality as well, it can be used at
least as a substitute of the DSPR I method when the latter requires some updates to
be performed.

Table 8.4 - 8.5 contain the ESO goals and ESO requirements. Note that both are
defined as performance evaluations over at least 15 minutes of telescope operations
under nominal conditions. These include wind induced vibrations which we have
not yet taken into account in our simulations. Therefore, we cannot straightforwardly
compare our results, that evaluate only 2 seconds of operation, with the ESO goals and
requirements, but we can still see that there is a big safety gap allowed for vibrations
reducing the quality.
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Simulation parameters
telescope diameter 37 m
central obstruction 30%
pupil mask ELT pupil with 50 cm wide spiders
pupil segments 6
science target on-axis (SCAO)
WFS PWFS
sensing band K (2.2 µm)
evaluation bands K (2.2 µm)

L (3.7 µm)
N (10.0 µm)

modulation 4 λ/D
controller integrator
atmospheric model von Karman
number of simulated layers 35
outer scale L0 25 m
atmosphere median
Fried radius r0 at λ = 500 nm 0.157 m
coherence time τ0 at λ = 500 nm 5.35 ms
number of subapertures 74× 74
minimum subaperture illumination 45%
number of active subapertures 3874 out of 5476
linear size of simulation grid 740 pixels
DM geometry ELT M4 model
DM delay 1
number of active actuators 5190
detector read-out noise 1 electron/pixel
background flux 0.431 photons/pixel/frame,

or 4.19 ADU/m2/ms/arcsec2

frame rate 500 Hz
photon flux or guide star brightness [100, 600] photons/subaperture/frame

or [10, 8] mag
zenith angle [0◦, 30◦, 60◦]
simulation time 2 s (1000 iterations)

Table 8.2: Simulation parameters used in the tests on the segmented ELT pupil.
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Moreover, in each of the Tables we show the roughly estimated theoretical limit of the
achievable long-exposure Strehl ratio. These rough estimates are obtained using the
assumption that in high flux the reachable quality is limited from above by the two
main error sources, the fitting and the temporal delay error. Following the approach
of [142], we evaluate the fitting error by

σ2
fitting = 0.287(da/r0)5/3,

where da denotes the average actuator’s distance and r0 the Fried radius, and the delay
error by

σ2
delay = 0.962(τ/τ0)5/3,

where τ is the delay, and τ0 the coherence time of the atmospheric turbulence.

Furthermore, we want to remark that the results presented in the Tables were ob-
tained with the same loop gains for different guide star magnitudes and zenith angles
which clearly underlines the stability of the algorithms. The quality results of several
numerical simulations can even be slightly improved by applying a loop gain being
optimized with respect to the special parameter choices of the individual test cases.
Except the DSPR II was rather sensitive to the choice of the loop gain for a zenith
angle of 60◦.

photon zenith no spiders DSPR I DSPR II theoretical
flux angle limit
600 0° 0.8851 0.8775 0.8654 0.8882

30° 0.8690 0.8597 0.8462
60° 0.7799 0.7660 0.7412

100 0° 0.8741 0.8650 0.8523
30° 0.8578 0.8473 0.8327
60° 0.7712 0.7551 0.7307

Table 8.3: Long-exposure Strehl ratios in the K-band (2.2 µm) after 1000 closed
loop simulation steps. As reconstruction method, we use the P-CuReD. We compare
the results for a benchmark simulation without spiders using the P-CuReD only and
employing the Split Approach combined with the proposed Direct Segment Piston
Reconstructors in the presence of telescope spiders.

8.6 Details on the realization
We will focus on a few numerical implementation details of the Split Approach, namely
the incorporated pyramid sensor model, illumination factor, loop gain, and phase
ambiguity.
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zenith no ESO ESO theoretical
flux angle spiders DSPR I DSPR II goal requirement limit
600 0° 0.9577 0.9547 0.9500 0.9605

30° 0.9515 0.9478 0.9425
60° 0.9157 0.9095 0.8990 0.57

100 0° 0.9535 0.9499 0.9449
30° 0.9472 0.9429 0.9371 0.80 0.60
60° 0.9121 0.9052 0.8944

Table 8.4: LE Strehl ratios in the L-band (3.7 µm) after 1000 closed loop simulation
steps using the P-CuReD in all simulations.

zenith no ESO ESO theoretical
flux angle spiders DSPR I DSPR II goal requirement limit
600 0° 0.9941 0.9937 0.9930 0.9946

30° 0.9932 0.9927 0.9919
60° 0.9880 0.9871 0.9855 0.60

100 0° 0.9935 0.9930 0.9923
30° 0.9926 0.9920 0.9911 0.95 0.93
60° 0.9875 0.9864 0.9848

Table 8.5: LE Strehl ratios in the N-band (10 µm) after 1000 closed loop simulation
steps using the P-CuReD in all simulations.

For the proposed direct segment piston reconstruction methods the non-linear pyramid
wavefront sensor model including interference effects can be taken into account for the
calculation of the piston control matrices Πi, i = 1, 2 (cf Section 3.2.2).

Numerical simulations show that wavefront estimation under pupil fragmentation is
extremely sensitive to the illumination factor determining which subapertures are ac-
tive, and further used for wavefront reconstruction. As already discussed, we perform
the segment-piston-free reconstruction on disjoint segments, hence we only use sub-
apertures which are illuminated at least 75%. In contrast, for the Direct Segment
Piston Reconstructor usage of measurements on less illuminated subapertures is cru-
cial. When using an illumination factor of 75% we are not able to eliminate the
differential pistons in the reconstructed phases. If we utilize partially illuminated sub-
apertures corresponding to an illumination factor of 45%, the direct segment piston
reconstruction methods correct the piston offsets. Please note that once we obtained
reasonable results using an illumination factor of 45%, we did not further tune the
parameter extensively.
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Figure 8.6: Robustness of the DSPR I and the instabilities of the DSPR II method il-
lustrated by the corresponding short-exposure Strehl ratios in the K-band for 1000 time
steps of test case 1 (600 photons/subaperture/frame and zenith angle 0◦), source [110,
149].

The loop gains for the two parts of the Split Approach have to be considered separately.
We identify an optimal loop gain for the segment-piston-free wavefront reconstruction
using the P-CuReD and another one for the direct segment piston reconstruction,
which is, generally, about half of the P-CuReD loop gain. Concerning the sensitivity
with respect to varying loop gains, the two DSPR approaches behave somewhat dif-
ferently. While the DSPR I method displays stronger resistance to varying loop gains,
the performance of the DSPR II method is more sensitive to changes of the loop gain,
especially for zenith angles of 60◦. Compared to smaller zenith angles, a slightly larger
loop gain was found to be optimal for large zenith angles, i.e., it is necessary to give
more weight on the correction of low-order modes for larger zenith angles.

There are different possibilities to efficiently close the AO loop. At the beginning of a
closed loop simulation, it is crucial to avoid phase ambiguity caused by the sinusoidal
part of the pyramid data, meaning that piston offsets of size 2π radians in the phase
cannot be distinguished by the pyramid sensor but heavily influence the image quality
[156]. Due to the non-linearity of the PWFS (“optical gain“) and the need to correct
low frequencies fast, we use a higher integrator control loop gain for the DSPR in
the first iterations. This results in a stronger emphasis on the correction of low-order
modes and provides an adequate control of piston offsets for data corresponding to
larger phases.

The last step of the algorithm contains the projection of the reconstructed wavefront
on the DM. One can therefore either solve equation (8.5) or evaluate Φ at the actuator
positions. We did choose the second approach. To be able to control also actuators
outside the reconstruction area we smoothly extend the reconstruction Φ to a larger
domain covering all used DM actuator positions.
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Figure 8.7: Residual pistons in radians (K-band) on the disjoint segments for the Split
Approach using the DSPR I, source [110, 149]. The photon flux corresponds to 100
photons/subaperture/frame using a zenith angle of 30◦. There is almost no residual
piston development. Additionally, the reconstructions do not suffer from the phase
ambiguity of the pyramid sensor since the piston offsets between the segments are
very much smaller than 2π radians. The global piston is subtracted from each of the
segment pistons for better visibility.

8.7 Summary on wavefront reconstruction in the
presence of spiders

The first part of the Chapter contained a brief overview on the ability of existing algo-
rithms to reconstruct wavefronts from pyramid wavefront sensor data in the presence
of support structures for the secondary mirror, the so called spiders. It is known that a
partial or complete shading of subapertures, depending on the thickness of the spiders,
leads to difficulties in controlling piston modes on disjoint pupil segments. We have
shown that on the one hand, at least some variants of the interaction-matrix-based
MVM approaches are able to handle spider obstruction effects successfully, though they
are known to be computationally demanding. On the other hand, there exist several
fast interaction-matrix-free model-based algorithms, which provide high-quality recon-
struction in case of annular apertures without spiders. Unfortunately, they run into
problems when dealing with sensor data (partially) shaded by spiders. In end-to-end
simulations we observe in this case random uncontrolled segment pistons in the resid-
uals. For the high-contrast large-scale AO systems in design, a combination of the
advantages of both reconstructor types, i.e., the ability to reconstruct wavefronts with
high precision and speed in the presence of spiders, is highly desirable.
In the second part of the Chapter we presented a solution, the so called Split Approach,
which combines the advantages of the interaction-matrix-based and -free methods and
provides a high-quality wavefront reconstruction in the presence of spiders with little
computational demand. The solution is based on the idea to split the reconstruction
of pistons on the pupil segments from the reconstruction of higher-order modes. For
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the latter part, one can use any of the available fast model-based algorithms reviewed
in Chapter 4 - 7. Especially beneficial here is the P-CuReD which has the smallest
computational load and also provides the best reconstruction quality when no support
structures shade the pupil.

For segment piston reconstruction we presented two approaches. One of them requires
the registration and inversion of a full interaction matrix. However, the control matrix
is afterwards projected to the space of segment pistons only, hence reduced in size.
Another one uses a small size interaction matrix instead which is registered in the
basis of segment pistons. The resulting control matrices are in both methods of small
size and the direct segment piston reconstruction step has a linear complexity.
Combined with the P-CuReD used for reconstruction of higher-order modes, the num-
ber of computations required for the complete wavefront reconstruction scales linearly
with the number of controlled actuators. This represents a big advantage of the Split
Approach compared to the usual interaction-matrix-based MVM, whose complexity
scales quadratically with the number of actuators. While MVM approaches may still be
computationally doable for relatively large-scale systems like METIS having a 74× 74
pyramid sensor in 2026, they are hardly feasible for extremely large systems like XAO
having 200 × 200 subapertures and a corresponding number of actuators to be con-
trolled in real-time. The presented Split Approach causes, in contrast, no difficulties
for the real-time implementation even on the largest AO systems of ELT-sized tele-
scopes.

Moreover, the Split Approach makes existing model-based phase reconstruction algo-
rithms developed for non-segmented pupils suitable for wavefront control in the pres-
ence of telescope spiders. Alternatively, another idea to overcome the effects of pupil
fragmentation with the model-based algorithms consists in an appropriate adjustment
of the underlying forward models. A corresponding extension of the algorithms will
be necessary and may allow for a stable control of segmented piston offsets without
using interaction-matrix-based attempts. The question whether such an extension is
possible and for which methods it is applicable needs further investigations.

The analysis of the Split Approach was done in the context of the instrument METIS
for sensing in the K-band. Further investigations on Direct Segment Piston Recon-
structors using pyramid sensors in different sensing wavelengths are of high interest
for several instruments in development for ELTs and planned future work. Although
the theory of the Split Approach is nonspecific to the instrument and therefore appli-
cable to any AO system, the wavefront reconstruction may possibly suffer from phase
ambiguity or other wavelength dependent effects of the pyramid sensor.

Once again we would like to stress out that our aim in the current study was to push
the fastest available reconstruction method for PWFS, the P-CuReD, towards high-
quality performance for fragmented ELT pupils. The numerical results indeed point
out that the goal was reached with the Split Approach at least for sensing in the
K-band.
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Chapter 9

Conclusions and Outlook

In this Thesis, we have presented and analyzed a well-defined mathematical model of
the pyramid wavefront sensor, several linear and non-linear wavefront reconstruction
algorithms for pyramid sensors and an approach for accurate wavefront reconstruction
on segmented pupils of ELTs.

First, we considered the mathematical background of pyramid wavefront sensors, which
are widely used in Adaptive Optics systems for astronomy, microscopy, or ophthalmol-
ogy. We derived the mathematical model of the non- and modulated pyramid sensor,
of the physically simpler roof wavefront sensors as well as their various approximations
in a distributional sense. The interference effects and the phase shift introduced by the
pyramidal prism were considered in the derivation of the forward models but partially
neglected in the development of wavefront reconstruction algorithms. In our analy-
sis, we allowed the sensors to be utilized in both the modulated and non-modulated
fashion. Due to the closed loop operation assumption, we could linearize the initially
non-linear forward operators. We further calculated Fourier transforms, singular value
decompositions, Fréchet derivatives, or adjoint operators which build the foundation
for the application of several mathematical approaches from the field of Inverse Prob-
lems.

The theoretical analysis of the operators representing pyramid sensor forward models
was aimed at a subsequent development of fast and stable algorithms for wavefront
reconstruction. Several Chapters of the Thesis were devoted to the application of math-
ematical methods to the problem of wavefront reconstruction from pyramid wavefront
sensor data. Among those, we introduced the following reconstructors:

• the Hilbert transform method:

– Singular Value Type Reconstructor,

• linear iterative methods:

– Conjugate Gradient for the Normal Eq. (CGNE) for pyramid sensors,
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– Steepest Descent (SD) for pyramid sensors,
– Steepest Descent-Kaczmarz (SD-K) for pyramid sensors,
– linear Landweber Iteration for Pyramid Sensors (LIPS),
– linear Kaczmarz-Landweber Iteration for Pyramid Sensors (KLIPS),

• non-linear iterative methods:

– non-linear Landweber Iteration for Pyramid Sensors (LIPS),
– non-linear Kaczmarz-Landweber Iteration for Pyramid Sensors (KLIPS).

Additionally, we have given an extensive overview on existing wavefront reconstruction
algorithms for the pyramid sensor. We presented interaction-matrix-based approaches,
Fourier domain methods, iterative algorithms, and methods based on the inversion of
the Hilbert transform. The main emphasis was put onto the various underlying models
of the reconstruction algorithms. We distinguished between phase mask and transmis-
sion mask pyramid sensor models, between full pyramid sensor models or roof sensor
simplifications, as well as linear approximations. The theoretical investigations were
completed with detailed comparisons of computational complexities of all reviewed
methods and numerical results for selected algorithms.

From the performed numerical end-to-end simulations we can draw the conclusion that
it strongly depends on physical parameters of the telescope and wavefront sensor (sub-
aperture size, modulation amplitude, sensing wavelength, non common path aberra-
tions, etc.) and on atmospheric parameters which reconstruction method is preferable.
However, all algorithms that were introduced in this Thesis deliver satisfying recon-
struction quality. Moreover, the proposed algorithms, which are partially iterative
methods, allow to keep the numerical effort of the wavefront reconstruction step in an
AO loop low compared to the computational load of solvers based on matrix-vector
multiplication which has an especially big impact for XAO systems having a huge
number of active actuators to be controlled. All of them meet the requested demands
with respect to computational complexity. The increased amount of currently avail-
able approaches for wavefront reconstruction from pyramid sensor data allows users of
AO systems on any ground-based telescope facility to choose from several high-quality
and high-speed algorithms which method best complies with their requirements.

Finally, we investigated the ability of existing algorithms to reconstruct wavefronts
from pyramid wavefront sensor data in the presence of wide support structures for sec-
ondary mirrors. Depending on the thickness of the spiders, pupil fragmentation leads
to difficulties in controlling piston modes on disjoint pupil segments. We have expe-
rienced that at least some variants of the interaction-matrix-based MVM approaches
are able to handle spider obstruction effects successfully, though they are known to
be computationally demanding. In order to overcome randomly appearing differential
piston effects when using fast model-based reconstructors, we developed the so called
Split Approach, which combines the advantages of the interaction-matrix-based and
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matrix-free methods. The algorithm is based on the idea to split the reconstruction
of pistons on the pupil segments from the reconstruction of higher-order modes. For
the separated direct segment piston reconstruction, we presented two new approaches.
For the reconstruction of the remaining modes, already existing reconstructors can
be used. The main focus in this study was to push the fastest available reconstruc-
tion method for pyramid sensors, the P-CuReD, towards high-quality performance on
segmented ELT pupils. The numerical results indeed pointed out that the goal was
reached with the Split Approach at least for sensing in the K-band.

There exist several ideas for further developments of the presented algorithms:

• The implementations of all new methods presented in this Thesis and moreover
of all other model-based reconstructors developed by the AAO team are based
on the roof wavefront sensor approximation. Even when using this simplification
of the pyramid sensor model, all proposed algorithms provide high-quality re-
construction comparable to approaches currently used on existing AO systems.
Nevertheless, we suggest mathematical investigations of the full transmission
and phase mask pyramid sensor model for future developments of reconstruction
algorithms in order to improve the wavefront estimates even more.

• The idea of non-linear reconstruction algorithms for the pyramid sensor is still
in development and we would like to continue our work on improving the quality
performance of the non-linear algorithms accompanied by a detailed analysis of
non-linearity effects of the pyramid sensor.

• The assumption of small residual wavefronts being measured by the wavefront
sensor and, on account of this, the linearity of the pyramid sensor may be violated
by, e.g., non common path errors of the system. Thus, the ability of existing
linear and non-linear reconstruction strategies to deliver accurate wavefront cor-
rections even under the impact of large NCPAs is of great interest. We plan
to come back to this topic including a detailed investigation of the reconstruc-
tion performance of the proposed algorithms in the presence of realistic NCPAs.
Generally, the influence of the magnitude of the incoming phase distortions on
the reconstruction quality needs to be analyzed for both linear and non-linear
reconstruction methods.

• The Split Approach makes existing model-based wavefront reconstruction algo-
rithms developed for non-segmented pupils suitable for wavefront estimation in
the presence of telescope spiders. An alternative idea to overcome the effects of
pupil fragmentation with the model-based algorithms consists in an appropriate
adjustment of the underlying forward models. A corresponding extension of the
algorithms will be necessary and may allow for a stable control of segmented
piston offsets without using interaction-matrix-based attempts. The question
whether such an extension is possible and for which methods it is applicable
needs further considerations.
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• The analysis of the Split Approach was done in the context of the instrument
METIS for sensing in the K-band. Further investigations on Direct Segment
Piston Reconstructors using pyramid sensors in different sensing wavelengths
are of high interest for several instruments in development for ELTs and planned
future work. Although the theory of the Split Approach is nonspecific to the
instrument and applicable to any AO system, the wavefront reconstruction may
possibly suffer from phase ambiguity or other sensing wavelength dependent
effects of the pyramid sensor.

• We would further like to continue our work on investigating the behavior of the
new reconstruction algorithms in the presence of telescope spiders when using
the Split Approach. So far, mainly the P-CuReD was utilized in combination
with a Direct Segment Piston Reconstructor.

• For a more specified establishment of the presented algorithms, tests on optical
benches and on-sky verifications are needed in order to imitate (more) realistic
settings.

Until now, we have only investigated the pyramid sensor operating in a Single Con-
jugate AO system of a telescope. Extensions to different operating modes such as
Multi Conjugate AO or applications in microscopy and ophthalmology are possible
and dedicated to future work.

In conclusion, we believe that the presented reconstructors are promising tools for
wavefront reconstruction on ground based telescope systems using pyramid wavefront
sensors. The methods, in principle, can be applied on any telescope system without
enhanced adaptions or heavy precomputations because they were developed indepen-
dently from technical structures such as pupil or mirror sizes, mirror actuator positions
or parameters as, e.g., the sensing wavelength of the sensor. Operators of the presented
reconstruction algorithms benefit from the ease of usage since very few to no parame-
ters have to be tuned in the approaches.
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Appendix A

Mathematical preliminaries

Lebesgue space
Let (X,A, µ) be a measure space, K ∈ {R,C}, and 1 ≤ p < ∞. We consider the
Lebesgue spaces with respect to µ defined as

Lp (X) :=
f : X → K, f is measurable,

∫
X

|f |p dµ <∞


and

L∞ (X) := {f : X → K, f is measurable, |f | <∞ µ− almost everywhere on X} .

The p-seminorm ||·||Lp(X) on Lp (X) is introduced as

||f ||Lp(X) =
∫
X

|f(x)|p dµ
1/p

for 1 < p <∞ and
||f ||L∞(X) = ess sup

x∈X
|f(x)| .

The Lebesgue space L2 (X) is a Hilbert space with inner product

〈f, g〉 =
∫
X

f(x)g(x) dµ.

Fourier transform
We define the Fourier transform (FT) of an integrable function f ∈ L1 (Rn) by

F {f} (ξ) := 1
(2π)n/2

∫
Rn

f(x)e−ix.ξ dx,
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where . denotes the standard euclidian scalar product inRn. The corresponding inverse
Fourier transform (IFT) is given by

F−1 {f} (x) := 1
(2π)n/2

∫
Rn

f(ξ)eix.ξ dξ.

Convolution
The convolution f ∗ g of two locally integrable functions f, g : Rn → C is defined by

(f ∗ g) (x) :=
∫
Rn

f (x′) g (x− x′) dx′.

Convolution theorem:
For f, g ∈ L1 (Rn) holds that

F {f ∗ g} (ξ) = (2π)n/2F {f} (ξ) · F {g} (ξ) ∀ ξ ∈ Rn. (A.1)

Distributions
The Schwartz space S (Rn) is the function space

S (Rn) :=
{
ϕ ∈ C∞ (Rn) : ||ϕ||α,β <∞ ∀α, β ∈ Nn

0

}
for the set of smooth functions C∞ (Rn), multi-indices α, β, and

||ϕ||α,β := sup
x∈Rn

∣∣∣xβDαϕ (x)
∣∣∣ .

The space of tempered distributions S ′ (Rn) is the space of all continuous, linear
functionals ϕ : S (Rn)→ C (dual space of S (Rn)).

Sobolev space
The Sobolev space Hs (Rn) for all s ∈ R is represented by

Hs (Rn) :=
{
f ∈ S ′ (Rn) :

(
1 + |ξ|2

)s/2
F {f} (ξ) ∈ L2 (Rn)

}
.

Generalized Minkowski’s integral inequality
Suppose that T : S1 × S2 → R is measurable for the σ-finite measure spaces (S1, µ1)
and (S2, µ2) and 1 ≤ p <∞. Then, the generalized Minkowski’s integral inequality is
(cf, e.g., [98, Theorem 202],[200])∫

S2

∣∣∣∣∣∣∣
∫
S1

T (x, y)µ1 (dx)

∣∣∣∣∣∣∣
p

µ2 (dy)


1/p

≤
∫
S1

 ∫
S2

|T (x, y)|p µ2 (dy)


1/p

µ1 (dx) . (A.2)
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